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Abstract. For a sheaf of rings R on a Grothendieck site, a tensor model

structure is constructed on the category of chain complexes of presheaves of

R-modules. The corresponding homotopy category is equivalent to the de-
rived category provided the topos of sheaves of sets has enough points. The

construction of the model structure is modified to give a family of t-model

structures. These t-model structures give rise to a family of t-structures on
the derived category, including the perverse t-structures.

1. introduction

This paper has to main objectives. The first is to give a tensor model cate-
gory such that the associated homotopy category is the derived category of chain
complexes of sheaves with its derived tensor product for an arbitrary unital ringed
space. This is achieved by using the category of chain complexes of presheaves of
R-modules for a sheaf of rings R, rather than the category of chain complexes of
sheaves of R-modules. We make our construction in the more general context of a
unital ringed topos with enough points. Our model structure is Quillen equivalent
to the injective model structure on the category of chain complexes of presheaves
provided the topos has enough points. The injective model structure on the cate-
gory of chain complexes of (pre) sheaves is not a tensor model category. For certain
ringed spaces, Hovey has constructed a tensor model structure on the category of
chain complexes of sheaves of R-modules [13]. See also Gillespie [9].

The second objective is to show that the perverse t-structures, on the derived
category of chain complexes of sheaves of R-modules for a suitable ringed space,
lift to t-model structures on the category of chain complexes of presheaves of R-
modules. This lift of a t-structure to a t-model structure basically means that the
t-structure comes from well controlled truncations at the chain complex level. The
t-model structures is constructed by modifying the localization techniques used
in the construction of our model structure on the category chain complexes of
presheaves of R-modules. The t-structures we construct are known for one-point
topoi and in many cases for ringed spaces. See for example [1], [14] and [17]. Our
main concern is to show that these t-structures actually lift to t-model structures.

We now give a summary of the paper. In Section 2 the definition of the derived
category is reviewed. In Section 3 the projective model structure is generalize to
the category of chain complexes of presheaves of R-modules. The weak equivalences
are presheaf homology-isomorphisms. In Section 4 the projective model structure
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is given a tensor structure. In Section 5 we define quasi-simplicial model structures
and show that the projective model structure is quasi-simplicial. In Section 6 the
projective model category is localized with respect to the stalkwise homology iso-
morphisms. The resulting model structure is called the stalkwise model structure.
It is a tensor model structure. If the ringed topos has enough points, then the
homotopy category of the stalkwise model category is equivalent to the derived
category DR.

In Section 7 families of t-structures on DR are constructed as t-model structures
on the category of chain complexes of presheaves of R-modules. The t-structures
we consider are “locally” the standard t-structures: One family of t-structures is
constructed by shifting the standard t-structure by an integer value at each point of
the topos. These t-structures generalize the perverse t-structures on DR. In Section
8 we give an explicit description of (DR)≥0 and (DR)≤0 associated to particularly
well-behaved t-structures.

An Appendix recalls Bousfield’s cardinality argument in a form suitable for our
applications. This is needed in Section 7. We assume the reader is familiar with
the fundamentals of model category theory. See for example [10, 12].

2. The derived category

Let C be a (skeletally) small Grothendieck site. Let E denote the category of
sheaves of sets on C, and let Pre denote the category of presheaves of sets on C.
Let i : E → Pre denote the inclusion functor. It has a left adjoint, the sheafification
functor. We denote the sheafification functor by L2 (=L ◦ L), and the unit of the
adjunction by η : 1 → i ◦ L2 [2, II.3.0.5]. Assume that E has a set of isomorphism
classes of points, and let pt(E) denote this set.

Let R be a sheaf of rings on C. Let S denote the category of left R-modules
in E , and let P denote the category of left iR-modules in Pre. The functor i
induces an inclusion functor i : S → P, and the functor L2 induces a left adjoint
sheafification functor L2 : P → S. The inclusion functor i : S → P is sometimes
not made explicit. Both S and P are abelian closed tensor categories with units R
and iR, respectively.

For any object C in C, let RC denote the free R-module in P generated by C
[2, IV.11.3.3]. There is a natural isomorphism

(2.1) P(RC , X) ∼= X(C).

Similarly, L2RC is the free R-module in S generated by C. Let • be the terminal
object in C. Then R is isomorphic to R•.

Definition 2.2. Let ch(P) denote the category of chain complexes of presheaves of
iR-modules on C, and let ch(S) denote the category of chain complexes of sheaves
of R-modules on C.

The categories ch(S) and ch(P) are abelian closed tensor categories. LetHn(X)
denote the n-th (presheaf) homology of the chain complex X.

Definition 2.3. A map f : X → Y in ch(P) is a presheaf homology-isomorphism
if

Hn(f) : Hn(X)→ Hn(Y )

is an isomorphism, for each n ∈ Z.
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A map f : X → Y in ch(P) is a sheaf homology-isomorphism if the sheafifi-
cation of the induced map on homology

L2Hn(f) : L2Hn(X)→ L2Hn(Y )

is an isomorphism, for each n ∈ Z.

Definition 2.4. A map f in ch(P) is a stalkwise homology-isomorphism if
(L2f)p is a homology-isomorphism of chain complexes of Rp-modules for all points
p in E .

Let i also denote the inclusion functor i : ch(S) → ch(P). A map f in ch(S)
is said to be a presheaf homology-isomorphisms, sheaf homology-isomorphism, or
stalkwise homology-isomorphism if i(f) has this property.

If E has enough points, then a map f in ch(P) is a stalkwise homology-isomorphism
if and only if it is a sheaf homology-isomorphism [2, IV.6.4.1].

Definition 2.5. The localization of ch(S) with respect to the class of all sheaf
homology-isomorphisms is called the derived category of chain complexes of
sheaves of R-modules on C. It is denoted by DR.

In Section 6 a tensor model structure on ch(P) is constructed such that the weak
equivalences are the stalkwise homology-isomorphisms. Its homotopy category is
equivalent to the derived category provided E has enough points. We first describe
a preliminary model structure on ch(P) with weak equivalences the smaller class
of presheaf homology-isomorphisms.

3. The projective model structure

Let R be a sheaf of rings. We define the cofibrant generators.

Definition 3.1. Let iC,n be the (vertical) map of chain complexes

· · · //

��

0 //

��

0 //

��

RC

=

��

// 0 //

��

· · ·

��
· · · // 0 // RC

= // RC // 0 // · · ·

where C ∈ C and the vertical identity map on RC is in degree n. Let I be the set
of all iC,n for C ∈ C and n ∈ Z.

Let jC,n be the map of chain complexes

· · · //

��

0 //

��

0 //

��

0

��

// 0 //

��

· · ·

��
· · · // 0 // RC

= // RC // 0 // · · ·

where C ∈ C and the rightmost copy of RC is in degree n. Let J be the set of all
jC,n for C ∈ C and n ∈ Z.

The following model structure on ch(P) is called the projective model struc-
ture on the category of chain complexes of presheaves of R-modules. Relative I-cell
complexes are defined in [10, 10.5].



4 H. FAUSK

Theorem 3.2. There is a proper cofibrantly generated model structure on ch(P)
with weak equivalences the presheaf homology-isomorphisms and cofibrations the
retracts of relative I-cell complexes. The fibrations are the levelwise surjective maps
of presheaves. A set of cofibrant generators is I and a set of acyclic cofibrant
generators is J . These generators have small sources.

A map of presheaves f : X → Y is levelwise surjective (injective) if fn(C) is
surjective (injective) as a map of sets, for all C ∈ C and n ∈ Z. A map is level-
wise surjective (injective) if and only if f is epic (monic) in the category P. The
cofibrations are included in the class of levelwise injective maps.

Proof. It suffices to check that: (1) inj (I) is equal to inj (J)∩W and (2) proj (inj (J))
is contained in the class of weak equivalences W [10, 11.3.1]. Recall that inj (I) is
the collection of maps that have the right lifting property with respect to all the
maps in I.

We first show that inj J is equal to the class of surjective maps, and that inj I is
equal to the class of surjective maps that in addition are homology-isomorphisms.
This gives (1) and the description of the fibrations.

A map from jC,n−1 to f : X → Y is specified by y ∈ Yn(C), and a lift is given
by an element x ∈ Xn(C) such that fn(C)(x) = y. Hence f has the right lifting
property with respect to jC,n−1 if and only if fn(C) is surjective.

We denote the n-cycles of Y at C, ker(Yn(C) → Yn−1(C)), by Z(Y (C))n. Ob-
serve that a map f : X → Y has the right lifting property with respect to iC,n if
and only if the canonical map from Xn+1(C) to Wn(C) in the pullback diagram

Wn(C)

��

// Yn+1(C)

��
Z(X(C))n // Z(Y (C))n

is surjective.
Assume that f has the right lifting property with respect to iC,n−1. Then

Z(X(C))n → Z(Y (C))n

is surjective since 0 × Z(Y (C))n is contained in Wn−1(C). Hence Hn(f)(C) is
surjective and Wn(C) → Yn+1(C) is surjective. The right lifting property with
respect to both iC,n−1 and iC,n implies that fn+1(C) : Xn+1(C) → Yn+1(C) is
surjective. So the induced map on boundaries

im(Xn+1(C)→ Xn(C))→ im(Yn+1(C)→ Yn(C))

is surjective. Hence Hn(f)(C) is bijective.
We now prove the converse claim. Assume that f is a homology-isomorphism

of presheaves and fn(C) is surjective, for all C ∈ C and n ∈ Z. Given an element
x ∈ Z(X(C))n and an element y ∈ Yn+1(C) such that d(y) = fn(x). We need to
show that the element (x, y) ∈ Wn(C) comes from an element in Xn+1(C). There
exists an element x′ ∈ Xn+1(C) such that dx′ = x because Hn(f) is injective. The
element fn+1(C)(x′)−y in Yn+1(C) is a cycle. Since Hn+1(f)(C) is surjective there
exists an element x′′ ∈ Xn+1(C) such that dx′′ = x and fn+1(C)(x′′) = y. This
shows that the diagram lifts. So iC,n has the left lifting property with respect to f .
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We now verify (2). Assume that f : X → Y is a map in proj (inj (J)). Consider
the diagram

X

f

��

f, id // Y ⊕X

idY ⊕0
��

Y
= // Y.

The rightmost vertical map is surjective. So by our assumption on f the diagram
lifts. Hence Hn(f) is injective for all n.

Now consider the diagram

X

f

��

id, 0 // X ⊕ Tot(Y ⊕ Y )

f⊕g
��

Y
= // Y

where Tot(Y ⊕ Y ) is the total complex associated to the double complex

· · · //

��

Yn+1
//

(−id)n+1

��

Yn //

(−id)n

��

Yn−1 //

(−id)n−1

��

· · ·

��
· · · // Yn+1

// Yn // Yn−1 // · · · .

The map g : Tot(Y ⊕ Y ) → Y is given by the identity map on the upper copy of
Y in the double complex and by 0 on the lower copy of Y . Hence the rightmost
vertical map in the diagram is surjective. By our assumption on f there is a lift in
the diagram. Since the homology of Tot(Y ⊕Y ) is 0 we get that Hn(f) is surjective
for all n.

The verification of properness reduces to the category of chain complexes of
R(C)-modules for each C ∈ C. A diagram chase shows that the pushout of a
homology-isomorphism along a levelwise injective map of chain complexes is again
a homology-isomorphism. A simpler verification shows that the pullback of a
homology-isomorphism along a levelwise surjective map of chain complexes is again
a homology-isomorphism. Both pushouts and pullbacks in ch(P) are formed level-
wise. Since the cofibrations are levelwise injective, and the fibrations are levelwise
surjective, it follows that the model structure is proper.

The cofibrant generators are small since evaluation of presheaves at an object C
of C commutes with direct sum. �

We refer to Hovey for an alternative description of the cofibrant objects and the
cofibrations in the projective model structure [12, 2.3.6, 2.3.8-9]. Note that the
isomorphism in Equation 2.1 shows that the presheaf RC is a projective object in
P, for each object C ∈ C. In fact all projective objects in P are retracts of direct
sums of object of the form RC , where C ∈ C. The projective objects of ch(P) are
retracts of J-cell complexes.

Remark 3.3. The projective model structure on ch(P) is a stable model structure.
Hence its homotopy category is a triangulated category [12, 7.1]. This triangulated
category is different from the derived category of chain complexes of sheaves of
R-modules on the site C.
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Definition 3.4. The unit interval complex, denoted U , consists of two copies
of R in degree 0, and one copy of R in degree 1, the differential is the identity map
on the first copy and minus the identity map on the second copy of R.

If X is a cofibrant object, then a cylinder object for X is given by X
∐
X →

X ⊗ U → X, where U is the unit interval complex. Hence we get the following.

Lemma 3.5. If X is a cofibrant object and Y an arbitrary object in the projective
model structure on ch(P), then Ho(ch(P))(X,Y ) is isomorphic to the group of chain
homotopy classes of (degree 0) chain maps from X to Y .

Proof. This follows since all objects are fibrant in the projective model structure
on ch(P). �

Remark 3.6. The projective model structure on ch(P) is well known. We sketch
an alternative construction of the projective model structure that mesh better with
other examples of model structures of this kind.

The category of presheaves on C with values in the category of chain complexes
of abelian groups is an abelian tensor category. Let A be a monoid in this abelian
category. Denote the category of A-modules by A-ch(P). Let ch(Z) have the
projective model structure. The projective model structure on A-ch(P) is inherited
from the set of right adjoint functors

A-ch(P)→ ch(Z)

given by evaluating at a set of objects C, representing each isomorphism class in C,
and composing with the forgetful functor from A(C)-modules to Z-modules.

A similar model structure on the category of presheaves of simplicial sets has
been given by Blander [5]. See also Hollander’s model structure on the category of
stacks [11].

A more elaborate class of examples of model categories of this type are strict
model structures on diagram spectra. Diagram spectra are most naturally studied
in an enriched setting.

These examples of presheaves on a site, as well as ours, first become interesting
after we suitably localize them. We consider localizations in Section 6.

4. Tensor structures

From now on we assume that R is a sheaf of commutative rings. The category
ch(P) is a symmetric closed tensor category. Let ⊗R, or simply ⊗, denote the tensor
product in ch(P). Let FR, or simply F , denote the internal hom functor in ch(P).
Our discussion of tensor model categories follows [15]. The next Lemma says that
all cofibrant objects in the projective model structure are flat chain complexes.

Lemma 4.1. Let K be a cofibrant object in ch(P) and let f : X → Y be a weak
equivalence. Then K ⊗ f is also a weak equivalence in ch(P).

Proof. The complex K is a retract of an I-cell complex K ′. Let f : X → Y be a
map of presheaves. There is a natural isomorphism

(4.2) (RC ⊗R Z)(D) =
⊕
C(D,C) Z(D)

for any presheaf Z and any two objects C and D in C. Hence K ′(D) is a directed
colimit of bounded below complex of free R(D)-modules. The tensor product of a
homology-isomorphism with a bounded below complexes of free modules is again a
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homology-isomorphism [16, 3.2, 5.8]. Homology commutes with directed colimits.
Hence K ′ ⊗R X → K ′ ⊗R Y is a presheaf homology-isomorphism. A retract of a
homology-isomorphism is again a homology-isomorphism, so K ⊗ f is a presheaf
homology-isomorphism. �

The unit object for the tensor product on ch(P) is the chain complex with a
copy of R in degree 0. We denote this chain complex also by R.

Lemma 4.3. The unit object R in ch(P) is cofibrant. More generally, RC is
cofibrant ch(P), for C ∈ C.

Proof. The map of chain complexes 0 → RC is a pushout of the cofibration iC,−1
along the map to the zero chain complex. Hence it is a cofibration. �

Let f1 : X1 → Y1 and f2 : X2 → Y2 be two maps. Then the pushout-product
map is the canonical map

M(f1, f2) : colim
(
Y1 ⊗X2

f1⊗1←− X1 ⊗X2
1⊗f2−→ X1 ⊗ Y2

)
−→ Y1 ⊗ Y2.

Definition 4.4. A model category with a tensor structure satisfies the pushout-
product axiom if M(f1, f2) is a cofibration whenever f1 and f2 are cofibrations,
and M(f1, f2) is an acyclic cofibration if f1 or f2 in addition is a weak equivalence.

A model category satisfying the pushout-product axiom is said to be a tensor
model category [15, 3.1].

Lemma 4.5. The projective model structure on ch(P) is a tensor model structure.

Proof. We need to show that the projective model structure on ch(P) satisfies
the pushout-product axiom. The (acyclic) cofibrations are closed under retracts,
transfinite directed compositions, and pushout [15, 3.5]. So it suffices to show that
if f1 and f2 are maps in I, then M(f1, f2) is a relative I-cell complex, and if f1
is a map in I and f2 is a map in J , then M(f1, f2) is a relative J-cell complex.
Note that RC1

⊗RC2
is isomorphic to RC1×C2

, for objects C1, C2 ∈ C. Denote this
object by R12 for brevity. We have that M(iC1,0, iC2,0) is the inclusion map(

· · · → 0→ 0→ R12 ⊕R12
a→ R12 → 0→ · · ·

)
−→(

· · · → 0→ R12
b→ R12 ⊕R12

a→ R12 → 0→ · · ·
)

where a is the folding map and b is given by the identity map on the first factor
and minus the identity map on the second factor. This is a relative I-cell complex.
Similarly, the map M(iC1,0, jC2,0) is a relative J-cell complex. �

Definition 4.6. A model category with a tensor structure satisfies the monoid
axiom if j⊗X is a weak equivalence for every acyclic cofibration j and any object
X, and if any transfinite directed composition of pushouts of such maps is again a
weak equivalence [15].

Lemma 4.7. The category ch(P) with the projective tensor model structure satisfies
the monoid axiom.

Proof. This follows from Equation 4.2. �

Let A be a differential graded R-algebra of presheaves (i.e. a monoid in ch(P)).
Denote the category of A-modules in ch(P) by A-ch(P).
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Lemma 4.8. The category A-ch(P) inherits a cofibrantly generated model structure
from ch(P) via the forgetful functor A-ch(P)→ ch(P). If A is a symmetric monoid,
then A-ch(P) is a tensor category (with tensor product over A) and the model
structure on A-ch(P) satisfies the pushout-product axiom and the monoid axiom.

Proof. This follows from Lemmas 4.1, 4.5, and 4.7 and [15, 4.1]. �

5. Quasi-simplicial model structures

We model theoretically enrich ch(P) in simplicial sets. We define a weakening
of the axioms for a simplicial model category [10, 9.1.6]. For the definition of a
simplicial category see [10, 9.1.2]. Let Map denote the (based) simplicial mapping
space. Let T denote the category of simplicial sets. Let X�S and F�(S,X)
denote the tensor and cotensor of X ∈ K by S ∈ T , respectively.

Definition 5.1. A quasi-simplicial model category is a model category K which
is a simplicial category satisfying the axioms below.

weakM6: Let X,Y be objects in K and let S be an object in T . There is a
natural isomorphism of simplicial sets

Map(X�S, Y ) ∼= Map(X,F�(S,X)).

There is a natural isomorphism of sets

T (S,Map(X,Y )) ∼= K(X�S, Y ).

M7: Let i : A → B be a cofibration in K and f : X → Y a fibration in K.
Then the map

i∗ × f∗ : Map(B,X)→ Map(A,X)×Map(A,Y ) Map(B, Y )

is a fibration of simplicial sets. If, in addition, i or f is a weak equivalence,
then i∗ × f∗ is a weak equivalence.

Lemma 5.2. Let K be a quasi-simplicial model category. Then the natural map
X�∗ → X (corresponding to 1X under the second adjunction in weakM6) is an
isomorphism, for all X ∈ K.

Proof. The Yoneda lemma applied to the following composition of isomorphisms

K(X,Y ) ∼= Map(X,Y )0 ∼= T (∗,Map(X,Y )) ∼= K(X�∗, Y )

gives the result. �

Axiom M7 has an equivalent formulation in terms of the tensor or cotensor
functors instead of the simplicial mapping space [10, 9.3.6]. One implication of
axiom M7 is that X�S → X�T is a weak equivalence in K whenever X is cofibrant
in K and S → T is an injective weak equivalence of simplicial sets. Combined with
Lemma 5.2 this gives that the suspension of a cofibrant object X is equivalent to
X�S1 and the loop of a fibrant object Y is equivalent to F�(S1, Y ).

In a simplicial structure the second isomorphism of mapping sets in axiom
weakM6 is strengthen to be an isomorphism of simplicial hom-sets. In a quasi-
simplicial structure, unlike a simplicial structure, repeated applications of the ten-
sor and cotensor functors need not respect the cartesian product (based: smash
product) of simplicial sets [10, 9.1.11].

Lemma 5.3. The projective model structures on ch(P) is quasi-simplicial.
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Proof. We make use of the Dold-Kan adjunction [18, 8.4]. Note that the inclusion
functor, k, from nonnegative chain complexes to unbounded chain complexes is left
adjoint to the truncation functor, τ≥0, given by sending

· · · → X2 → X1 → X0 → X−1 → X−2 → · · ·

to

· · · → X2 → X1 → ker(X0 → X−1)→ 0→ · · · .
Let D denote the right adjoint of the normalized chain complex functor N . Let

S be a simplicial set. Let R[S] be the free simplicial R-module, and let NR[S] be
the associated chain complex. We define the simplicial tensor to be X ⊗R kNR[S]
and the simplicial cotensor to be F (kNR[S], X), for X ∈ ch(P). The simplicial
hom functor, Map(X,Y ), is defined to be

Djτ≥0Γ(F (X,Y ))

for X,Y ∈ ch(P), where Γ denotes the global section functor, j denotes the forgetful
functor from the category of ΓR-chain complexes to the category of chain complexes
of abelian groups. The adjunctions in axiom weakM6 are satisfied.

Note first that the weakened version of axiom M6 still implies that axiom M7
has an alternative formulation as a pushout-product axiom in terms of the tensor
[10, 9.3.7]. If i : S → S′ is an inclusion of simplicial sets, then kNR[i] : kNR[S]→
kNR[S′] is a cofibration in the projective model structure, and if i is a weak equiv-
alence, then kNR[i] is a presheaf homology isomorphism in ch(P). Hence axiom
M7 follows from Lemma 4.5. �

6. The stalkwise model structure

Given a (skeletally) small Grothendieck site C. The following model structure is
called the stalkwise model structure on ch(P).

Theorem 6.1. There is a proper quasi-simplicial cofibrantly generated stable model
structure on ch(P). The weak equivalences are stalkwise homology-isomorphisms
and the cofibrations are retracts of relative I-cell complexes. With this model struc-
ture the tensor structure on ch(P) satisfies the pushout-product axiom and the
monoid axiom.

Proof. Let p be an arbitrary point in E . The corresponding stalk functor from
ch(P) to the category of chain complexes of Rp-modules respects both pushout and
pullback squares, levelwise surjective maps, and levelwise injective maps. Further-
more, it takes homology-isomorphism of presheaves to homology-isomorphisms of
Rp-modules.

For each point p in E the functor (Hn)p is a σ-uniform homology theory in ch(P)
which commutes with arbitrary directed colimits (see Definitions A.2, A.3 and A.4).
The homology groups are σ-uniform for a cardinal σ (for example the cardinality of
the direct sum of R(C) for all objects C in a skeleton of C. Hence we can Bousfield
localize ch(P) with respect to (Hn)p-equivalences for n ∈ Z and p in pt(E). See
Appendix A for details.

The model structure is proper and satisfies the pushout-product axiom and the
monoid axiom. This follows from Theorem 3.2, Lemmas 4.5 and 4.7, and stalkwise
verification of weak equivalences. The stalkwise model structure is quasi-simplicial
with the same definitions of tensor, cotensor and simplicial hom functors as defined
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in Lemma 5.3. Axiom M7 follows because the stalkwise model structure satisfies
the pushout-product axiom. The model category is stable. �

Let A be a commutative monoid in ch(R) (a commutative DGA). Then there
are stalkwise model structures on the category of A-modules and A-algebras [15,
4.1]. (The cofibrant generators in the stalkwise model structure in Theorem 6.1 are
small relative to the whole category for a suitable cardinal.)

The injective model structure on ch(S) has sheaf homology-isomorphisms
as weak equivalences and levelwise injections as cofibrations. For a discussion of
this model structure see [12, 2.3.13]. The fibrant objects are chain complexes of
injective sheaves that are K-injective in the sense of Spaltenstein [16, 1.1].

Proposition 6.2. Assume that the topos E has enough points. The adjoint pair
(L2, i) gives a Quillen equivalence between ch(P) with the stalkwise model structure
and ch(S) with the injective model structure.

In particular, the homotopy category of ch(P) with the stalkwise model structure
is equivalent to DR as a triangulated category.

Proof. The functor L2 applied to a levelwise injective map of chain complexes of
presheaves is a levelwise injective map of chain complexes of sheaves. Let X and
Y be two objects in ch(P) and ch(S), respectively. The unit map X → i ◦ L2X
of the (L2, i)-adjunction is a sheaf homology-isomorphism [2, II.3.2]. Hence a map
X → i(Y ) is a sheaf homology-isomorphism in ch(P) if and only if L2(X) → Y
is a sheaf homology-isomorphism in ch(S). Since the topos has enough points a
map X → i(Y ) is a sheaf homology-isomorphism if and only if it is a stalkwise
homology-isomorphism, and i applied to a stalkwise homology-isomorphism is a
sheaf homology. Hence the adjoint pair is a Quillen equivalence. �

Assume E has enough points. The class of fibrations for the stalkwise model
structure on ch(P) contains the class of fibrations for the injective model structure
on ch(S). The tensor product on Ho(ch(P)) given by the tensor model structure on
ch(P) gives the usual derived tensor product on DR by Lemma 4.1. The homsets
in the derived category DR is described as in Lemma 3.5. The homset DR(X,Y ) is
the set of homotopy classes of maps from a cofibrant replacement of X to a fibrant
replacement of Y .

Proposition 6.3. Assume that i : S → P respects direct sum. Then there is a
proper quasi-simplicial cofibrantly generated model structure on ch(S) with cofibrant
generators L2I. The weak equivalences are the stalkwise homology-isomorphisms
and the cofibrations are retracts of relative L2I-cell complexes. The model structure
satisfies the pushout-product axiom and the monoid axiom.

Proof. The assumption implies that L2RC is small for all objects C ∈ C. So the
sources of L2I and L2J are small. Relative L2J-cell complexes in ch(S) are presheaf
homology-isomorphisms. Hence there is a proper cofibrantly generated model struc-
ture on ch(S) such that the weak equivalences are presheaf homology-isomorphisms,
and the cofibrant generators are L2I and acyclic cofibrant generators are L2J [10,
11.3.2]. Hence we can localize with respect to the stalkwise homology-isomorphisms
as in Theorem 6.1 using Proposition A.12.

The model structure is proper, quasi-simplicial, and satisfies the pushout-product
axiom and the monoid axiom. This is verified as in the proof of Theorem 6.1.
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The quasi-simplicial structure constructed in the proof of Lemma 5.3 has to be
modified by applying the sheafification functor to the tensor and cotensor functors
constructed there. �

Proposition 6.4. Assume that i : S → P respects direct sum. Let ch(S) and ch(P)
both have the stalkwise model structure. The pair of adjoint functors i : ch(S) →
ch(P) and L2 : ch(P)→ ch(S) is a Quillen equivalence.

Proof. The sheafification functor respects cofibrations and weak equivalences. A
map L2X → Y is a stalkwise homology-isomorphism if and only if the adjoint
map X → i(Y ) is a stalkwise homology-isomorphism for every X ∈ ch(P) and
Y ∈ ch(S). �

If X is a Noetherian topological space and R is a sheaf of rings on X, then direct
sums of sheaves in the category of presheaves are themselves sheaves. Hence the
condition of Proposition 6.3 is satisfied.

Example 6.5 (Flat model structure). Let (S,R) be a ringed space, and assume
that (S,R) has finite hereditary global dimension [13, 3.1]. Under these assump-
tions Hovey has constructed a tensor model structure on ch(S), called the flat
model structure [13, 3.2]. The assumptions are satisfied if S is a finite-dimensional
Noetherian space [13, 3.3]. Hovey constructs a cofibrantly generated model struc-
ture on ch(S) with weak equivalences the stalkwise homology-isomorphisms. The
fibrations are maps that are levelwise surjective, as presheaves, and whose kernels
are complexes of flasque sheaves [13, 3.2].

We compare our model structure to his. Assume that (S,R) has finite hereditary
global dimension. Let ch(P) have the stalkwise model structure and ch(S) the flat
model structure. We claim that L2 : ch(P)→ ch(S) is a Quillen left adjoint functor
to the forgetfull functor i : ch(S) → ch(P). The functor L2 respects cofibrations
since L2 respects colimits and L2 of the cofibrant generators of the stalkwise model
structure are among the cofibrant generators of the flat model structure [13, 1.1,
3.2]. In addition L2 respects weak equivalences. So (L2, j) is a Quillen adjunction.
This is a Quillen equivalence since L2X → Y is a sheaf homology-isomorphism in
ch(S) if and only if the adjoint map X → i(Y ) is a sheaf homology-isomorphism in
ch(P), for X ∈ ch(P) and Y ∈ ch(S).

7. Some t-structures on derived categories

We construct t-structures on the homotopy category of ch(P) with the stalk-
wise model structure. These t-structures interact well with the model structure
on ch(P). More precisely, they all arise from a t-model structure on ch(P). For
the definition of a t-structure on a triangulated category see [7, 2.1]. The original
source is [4]. Homological grading of t-structures is used. So D≥n,D≤n−1 corre-
sponds to D≤−n,D≥−n+1 in cohomological notation. The heart of the t-structure
is the intersection D≥0 ∩ D≤0.

We formulate the results of this section for stable model categories. Let K be
a stable model category. Then the homotopy category Ho(K) is a triangulated
category [12, 7.1]. Assume a t-structure on Ho(K) is given. For the definition of
homotopy fibers see [10, 13.4].
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Definition 7.1. The class of n-equivalences in K is the class of maps f in K
such that the homotopy type of hofib(f) is in Ho(K)≥n, and the class of co-n-
equivalences in K is the class of maps f in K such that the homotopy type of
hofib(f) is in Ho(K)≤n−1 [7, 3.1].

We now make precise what we mean by lifting a t-structure from the homotopy
category Ho(K) to the model category K.

Definition 7.2. A (weak) t-model category is a proper quasi-simplicial stable
model category K with functorial factorization equipped with a t-structure on its
homotopy category and a functorial factorization of maps in K as n-equivalences
followed by co-n-equivalences, for each n ∈ Z.

This is a weakening of the definition of a t-model structure given in [7, 4.1].
There the model structure is required to be simplical rather than quasi-simplicial.
This is a harmless weakening and the results of [7] are still valid (with simplicial
replaced by quasi-simplicial).

We are mainly interested in t-structures on the homotopy category of ch(P) with
the stalkwise model structure, but we consider a more general framework. Let K be
a proper quasi-simplicial stable cellular model category together with a t-structure
on its homotopy category. Let I be a set of cofibrant generators of K [10, 12]. We
make the following assumptions:

(1) the maps in I have small sources;
(2) the heart of the t-structure is the category of sheaves S (or of presheaves P)

of R-modules for a ring of sheaves R on a (skeletally) small Grothendieck
site C; and

(3) the heart functor, H : K → S is a σ-uniform homology theory, for some
cardinal σ (see Definition A.3).

The topos E is assumed to have a set, pt(E), of isomorphism classes of points. Let
D denote the homotopy category of K. Let

d : pt(E)→ Z ∪ {±∞}

be a function. We construct t-model structures on K by shifting the originally given
t-structure on K in such a way that at each point of E , in the isomorphism class
p ∈ pt(E), the shift is given by Σd(p). Let Hn denote the functor H ◦ Σ−n. We
make the convention that ∞ + n = ∞ and −∞ + n = −∞ for all integers n, and
H∞(X) =

⊕
n∈ZHn(X) and H−∞(X) = 0.

Proposition 7.3. There is a t-model structure (with simplicial relaxed to quasi-
simplicial) on K such that

D≥0 = {X | (Hnp
(X))p = 0 for all np < d(p)}.

The associated class of n-equivalences, Wn, consists of all maps f such that
(Hnp(f))p is an isomorphism for all np < d(p)+n and (Hd(p)+n(f))p is a surjection
if |d(p)| <∞.

Proof. A diagram chase shows that pushout of a Wn-map along a cofibration (level-
wise injective map) is again a Wn-map (Lemma A.7). For each point p in the topos
E the functor (H)p from K to abelian groups respects sums and directed colimits
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of relative I-cell complexes. We can localize the category K with respect to the
Z-indexed homology theory whose n-th functor is

X 7→
⊕

p(Hd(p)+n(X))p

using Proposition A.12. See also [7, 7.5]. �

The full subcategory D≤−1 is

{Y ∈ D | D(X,Y ) = 0 for X ∈ D≥0}.

We describe D≤−1 more explicitly in Section 8 when K is ch(P).

Corollary 7.4. Let Z be a subset of pt(E). Then there is a proper quasi-simplicial
model structure on K such that the weak equivalences are

⊕
p 6∈Z(H∗)p-isomorphisms

and the cofibrations are retracts of relative I-cell complexes.

Proof. Let dZ : pt(E) → Z ∪ {±∞} be the function defined by letting dZ(z) = ∞,
for z 6∈ Z, and dZ(z) = −∞, for z ∈ Z. The result follows from Proposition 7.3
applied to the function dZ . �

The heart homology Hn(X) is a (pre)sheaf of R-modules. We refine the t-
structure given in Proposition 7.3 by taking the structure of the ring Rp, for each
point p, into account. Let

d :
∐
p∈pt(E) specRp → Z ∪ {±∞}

be a function. We can localize the category K with respect to the Z-indexed ho-
mology theory whose n-th functor is

X 7→
⊕

p,p((Hd(p,p)+n(X))p)p.

Proposition 7.5. There is a t-model structure (with simplicial relaxed to quasi-
simplicial) on K such that

D≥0 = {X | ((Hnp,p
(f))p)p = 0 for all np,p < d(p, p)}.

The corresponding class of n-equivalences is the class of maps f in K such that

((Hnp,p
(f))p)p

is an isomorphism for all np,p < d(p, p) + n, and a surjection for np,p = d(p, p) + n
if |d(p, p)| <∞.

Proof. The result follows from Proposition A.12. �

If d restricted to each specRp is a constant function, then Proposition 7.5 reduces
to Proposition 7.3.

Remark 7.6. We can make further modifications to this construction for example
by tensoring the heart homology functors with a flat module over the sheaf of
rings R and localizing with respect to this homology theory instead. For example
if R ∼= Z (the one-point site), then we can use a rational heart homology theory
H ⊗ Q instead of H. If R is a sheaf of integral domains, then the sheafification of
the presheaf of fraction fields R(0) is a flat R-module.
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Example 7.7. The conditions on K required in this section are satisfied for the
stalkwise model structure on the category of chain complexes of presheaves of R-
modules, together with the standard t-structure on its homotopy category DR. The
heart valued homology functor of the standard t-structure on DR, localized at a
point p of the topos, is the usual homology of chain complexes localized at p. The
homology functor, at each point, respects sums and directed colimits of relative
I-cell complexes, and it is σ-uniform for some cardinal σ.

Let A be a monoid in ch(P) such that the sheaf valued homology is zero in
negative degrees. The assumption on A assures that there is a standard t-structure
on the homotopy category of A-ch(P) [7, Section 12]. Proposition 7.5 applies to
the category of A-modules in ch(P) with the standard t-structure.

Example 7.8 (Ring). Let C be the one morphism site. Then a ringed topos of
presheaves on C is the category of sets together with a ring R, and S = P is the
category of R-modules. The projective and the stalkwise model structures on ch(S)
coincide. The localization in Corollary 7.4 has been constructed by Neeman for the
one morphism site [14, 3.3].

Let R be a Noetherian ring. Stanley has constructed the t-structures in Propo-
sition 7.5 on the full subcategory of DR consisting of complexes whose homology
groups are finitely generated in each degree and bounded above and below [17]. He
showed that there are no other t-structures on this full subcategory of DR [17, 5.3].

Example 7.9 (Perverse t-structures). We consider the category of R-modules for
a ringed space (S,R). A topological space is said to be sober if all closed irreducible
sets have a unique generic point. Let k : S → Ssob be the universal map to a sober
space. The points of Ssob corresponds to closed irreducible subsets of S, and the
map k is given by sending a point s ∈ S to the closure of s in S. The space of
(isomorphism classes of) points of (S,R) is the space Ssob [2, IV.7.1.6].

We now assume that S = Ssob and compare our t-structures to the perverse
t-structures introduced by Beilinson, Bernstein, Deligne and Gabber [4]. They
consider a nonempty finite partition {Sa}a∈A of S into locally closed sets, together
with a function p : A→ Z, called the perversity function. A locally closed set is an
intersection of an open and a closed set. The t-structure associated to a perversity
function p is given by

D≥0 = {X |Hn(i∗Sa
X) = 0 for n < p(a), a ∈ A},

for the locally closed sets {Sa}a∈A in S [4, 2.2.1]. This agrees with

{X |Hn(X)q = 0 for n < p(a), q ∈ Sa, a ∈ A}.
Given a perversity function p. There is associated a function dp : S → Z ∪ {±∞},
defined by letting

d−1p (n) = d−1p ([n,∞])− d−1p ([n+ 1,∞]) =
⋃
a∈p−1(n) Sa.

The perverse t-structure associated to p agrees with the t-structure in Proposition
7.3 for the associated function dp. Hence the perverse t-structures on DR lift to
t-model structures on ch(P). If X is a Noetherian topological space, then the
perverse t-structures on DR lift to t-model structures on ch(S).

Example 7.10 (Stable homotopy category of spectra). We give an application of
Proposition 7.5 to a category which is not a derived category. The heart of the
stable homotopy category of spectra S with the t-structure given by Postnikov
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sections is equivalent to the category of abelian groups. Hence Proposition 7.5
gives a twisted variant of the Postnikov t-structure. For each prime number p let
Np ∈ Z ∪ {±∞} and let N0 ∈ Z ∪ {±∞}. Then the associated full subcategory,
S≥0 (the connective spectra), of S consists of spectra X such that

(Hnp
(X))p = 0

whenever np < Np, for all primes p, and Hn0
(X)⊗Q = 0 whenever n0 < N0.

Example 7.11 (Pro-chain complexes). A t-model structure on ch(P) gives rise to a
model structure on the category of pro-chain complexes of presheaves of R-modules.
For example, there is a proper stable tensor model structure on pro-ch(P) such that
the levelwise t-structure on the triangulated homotopy category of pro-ch(P) has
the property that the intersection⋂

n∈Z Ho (pro-ch(P))≥n

consists of objects isomorphic to the zero object in Ho (pro-ch(P)) [7, 9.4]. It is
essential to work with t-model structures for the construction of these triangulated
categories. In fact examples like this was the motivation for introducing t-model
structures. Work by the author on a general local cohomology theory makes use of
model structures on categories of pro-chain complexes of presheaves of R-modules
[8].

8. A description of D≤0 for the derived category

Recall that the homotopy category of ch(P) with the stalkwise model structure
is equivalent to the derived category DR provided E has enough points. We denote
this category D for brevity. Let d : pt(E) → Z ∪ {±∞} be a function such that
d−1([n,∞]) is an open subset of pt(E), for every n ∈ Z ∪ {±∞}. We describe the
full subcategory D≤0 of D for the t-structure associated to d. We first recall some
terminology and a Lemma.

The support of an object X in E is defined to be

sup(X) = {p ∈ pt(E) | Xp 6= ∅}.

Note that if X → Y is a map in E , then sup(X) ⊂ sup(Y ). Recall that the topology
on pt(E) is generated by a basis of open sets consisting of sup(S), for all subobjects
S of the terminal object • of E [2, IV.7.1.7]. Neighborhoods of points are defined
in [2, IV.6.8].

Lemma 8.1. Let X be an object in E and let p be a point of E. Suppose given an
element x ∈ Xp and an open subset U of pt(E) containing p. Then there exists an
object C ∈ C with support contained in U and a map C → X in E such that x is in
the image of Cp → Xp.

In other words, p has a neighborhood with support contained in U .

Proof. By definition of the topology on pt(E) there is a subobject S of • such that
p ∈ sup(S) ⊂ U . The stalk, Sp = •, is the colimit of S(C) for neighborhoods
(C, c ∈ Cp) of p. Hence there exists a neighborhood (C, c ∈ Cp) of p such that x
in the image of Cp → Xp and S(C) 6= ∅ (so there is a map C → S in E). Since
sup(C) ⊂ sup(S) the claim follows. �
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Proposition 8.2. Assume that E has enough points. Let d : pt(E) → Z ∪ {±∞}
be a function such that d−1([n,∞]) is an open subset of pt(E) for every element
n ∈ Z∪{±∞}. Then there is a t-model structure on ch(P) (with simplicial relaxed
to quasi-simplicial) such that

D≥0 = {X | (Hnp(X))p = 0 for all np < d(p)}
and

D≤0 = {X | (Hnp
(X))p = 0 for all np > d(p)}.

Proof. By Proposition 7.3 there is a t-model structure on ch(P) such that D≥0 is
the full subcategory above. The description of D≤0 follows by constructing the
truncation functors associated to this t-structure explicitly.

For each object C ∈ C let n(C) ∈ Z ∪ {±∞} be the largest number such
that n(C) ≤ d(p), for all p ∈ sup(C). Define a subcomplex X≥0 of X as fol-
lows (X≥0)k(C) is Xk(C) for k > n(C), 0 for k < n(C), and ker(Xn(C)(C) →
Xn(C)−1(C)) for k = n(C) if |n(C)| < ∞. There is a canonical inclusion map
X≥0 → X and we denote the cokernel by X≤−1. This cokernel is weakly equivalent
to the homotopy cofiber in the injective model structure on ch(P), since any injec-
tive map is a cofibration between cofibrant objects. Hence there is a distinguished
triangle

X≥0 → X → X≤−1 → ΣX≥0

in the homotopy category [12, 6.2.6, 6.3, 7.1]. The class of objects of the form X≥0
are closed under suspension and the class of objects of the form X≤0 are closed
under desuspension. Since the transformations X≥0 → X and Y → Y≤−1 are
natural and X≥0 and Y≤−1 both are the zero functor it follows that the derived
hom sets D(X≥0, Y≤−1) are zero for all objects X and Y .

Lemma 8.1 implies that the map X≥0 → X is a stalkwise equivalence if and only
if X ∈ D≥0, and X → X≤−1 is a stalkwise homology isomorphism if and only if
X ∈ D≤−1. Since a t-structure is determined by D≤0 the result follows. �

Corollary 8.3. The heart of the t-structure in Proposition 8.2 is given by

{X | (Hnp
(X))p = 0 for all np 6= d(p)}.

Remark 8.4. In Proposition 8.2 the description of D≥0 and D≤0 might be true
under other assumptions on d. For example if d−1([n,∞]) is closed (instead of
open), for all n ∈ Z ∪ {±∞}, then Proposition 8.2 is still valid (define n(C) to be
the smallest number such that n(C) ≥ d(p), for all p ∈ sup(C)).

Example 8.5 (Quasicoherent sheaves). Let (S,OS) be a scheme. There is a full
abelian subcategory of S consisting of quasi-coherent OS-modules. Typically, OU
is not quasi-coherent for an open subset U of S. So we can not follow Chapter
3 and give a projective model structure on the category of chain complexes of
quasi-coherent OS-modules.

We can construct t-model structures on the category of chain complexes of quasi-
coherent presheaves using the techniques of Chapter 7 and a cofibrantly generated
proper model structure given by Hovey for certain schemes [13, 2.4, 2.5]. The
proof of Lemma 5.3 shows that his model structure is quasi-simplicial (the complex
associated to a simplicial set are chain complexes of free OS-modules).

A t-structure on the derived category of quasi-coherent OS-modules can in some
instances be inherited from a t-structure on DOS

. Assume that S is a finite dimen-
sional Noetherian scheme. Since S is quasi-compact and quasi-separated the derived
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category of chain complexes of quasi-coherent OS-modules is a full subcategory of
the derived category of chain complexes of OS-modules [3, p.187]. Moreover, our as-
sumptions guarantee that the objects of this full subcategory are exactly complexes
with quasi-coherent homology [3, p.191].

Assume, furthermore, that the truncation X≤0 has quasi-coherent homology
whenever X has quasi-coherent homology. Then the t-structures on DOS

, con-
structed in Proposition 7.5, clearly restrict to give t-structures on the derived cate-
gory of chain complexes of quasi-coherent OS-modules. These perverse t-structures
come from t-model structures: The t-model structures on the category of chain
complexes of presheaves on S can be restricted to the full subcategory of chain com-
plexes of presheaves with the weak homotopy type of a chain complex of sheaves of
OS-modules with quasi-coherent homology. The homotopy category of this full sub-
category is equivalent to the derived category of chain complexes of quasi-coherent
OS-modules.

Example 8.6. Assume that the derived category of chain complexes of quasi-
coherent R-modules is a full triangulated subcategory of D. This is the case for
the Zariski topology on a quasi-compact and quasi-separated scheme. The full
subcategory inherit a t-structure from D if the truncation functors respect the full
subcategory. In the next section conditions on the function d : specR → Z ∪ ∞
are given which guarantee that truncation functors respect this full subcategory.
[REFERENCES, objects are equivalent to q coherent if their homology is so. Look
at older versions of this article.]

Note that many different functions d : specR→ Z∪∞ will give rise to the same
t-model structures on the full subcategory of D of chain complexes of quasi-coherent
R-modules. For example if a point m is a specialization of a point p, then we might
as well require that d(p) ≥ d(m).

Recall that a point m is a specialization of a point p if there is a map p→ m [2,
4.2.2]. If M is a quasi-coherent module and Mm = 0, then Mp = 0. This follows
from the corresponding property of the sheaf of rings R. Which again follows from
considering the equalizer S of the maps 0 and 1 from the terminal object • to R.
The subobject S of • has SP = • if and only if Rp = o. For any subobject S of •
there is a map Sm → Sp. Hence if Rm = 0, then Sp. (This also shows that any
open subset of the space of isomorphism classes of points of E that contains m must
also contain p. Hence if m is a specialization of p, then m is in the closure of p.)

Appendix A. Bousfield’s cardinality argument

We use Bousfield’s cardinality argument to produce functorial factorizations [6].
Let K be a proper cellular stable model category with functorial factorizations [10,
12.1.1]. Let I be a set of cofibrant generators.

Definition A.1. Let X be an I-cell complex. The cardinality of the set of cells in
X is denoted ]X. Let i : A → X be a relative I-cell complex. The cardinality of
the set of I-cells used to build X from A is denoted ](X,A).

Definition A.2. Let h be a functor from K to the category of sets. The functor h
is said to satisfy the colimit axiom if for all relative I-cell complexes A→ X

colimα h(Xα)→ h(X)

is a bijection where the colimit is over all relative sub I-cell complexes iα : A→ Xα

of i such that ](Xα, A) is finite.
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Definition A.3. Let σ be a cardinal. We say that a functor h from relative I-cell
complexes to sets is σ-uniform if the cardinality of h(X) is less than or equal to
σ × ]X for all I-cell complexes X.

Definition A.4. A homology theory h (satisfying the colimit axiom) on the tri-
angulated category Ho(K) is a functor h from Ho(K) to abelian groups such that
distinguished triangles are sent to exact sequences, and h composed with the local-
ization functor K → Ho(K) satisfies the colimit axiom.

The exactness property of h implies that it respects finite sums. The colimit
axiom furthermore implies that it respects arbitrary sums. If h is a homology
theory, then h ◦ Σn is again a homology theory and it is denoted h−n.

Definition A.5. Given a homology theory h. Let E be the class of all maps f
such that

⊕
s<0 hs(f) is injective and

⊕
s≤0 hs(f) is surjective.

Note that the class E is closed under compositions and retracts but it need not
satisfy the two-out-of-three property. If h is the heart homology functor for a t-
structure, then E associated to h−n is the class of n-equivalences (see Definition
7.1). In this case inj (E ∩C) is the class of fibrations that are co-n-equivalences [7,
4.6].

Lemma A.6. The class E has the left cancelation property: If f and g are any
two composable maps such that f and g ◦ f are in E, then g must also be in E.

Proof. This follows since the class of surjective and bijective maps both have this
property. �

Lemma A.7. The class E is closed under homotopy pushouts.

Proof. If the map g : A′ → B′ is the pushout of the map f : A → B along a
cofibration, then the two horizontal sequences

hk(Σ−1C)

∼=
��

// hk(A)

��

hk(f) // hk(B)

��

// hk(C)

∼=
��

// hk(ΣA)

��
hk(Σ−1C ′) // hk(A′)

h(g) // hk(B′) // hk(C ′) // hk(ΣA′)

are exact. If hk(f) is injective, then a diagram chase shows that hk(g) is also
injective. If hk(f) is surjective and hk(Σf) = hk−1(f) is injective, then hk(C) is
the null-object, hence hk(g) is also surjective. �

We want to produce a functorial factorization of a map in K as a map in C ∩E
followed by a map that has the right lifting property with respect to all maps in
C ∩ E.

We say that f : A → X is an inclusion of I-cell complexes if A is an I-cell
complex and f is a relative I-cell complex.

Definition A.8. Let Ecell denote the class of all inclusions of I-cell complexes that
are in E. Let Ecell

σ denote the class of all inclusions of I-cell complexes A→ X in

E such that ]X ≤ σ. Let Ercell denote the class of all relative I-cell complex in E.

The class Ecell
σ is skeletally small for each cardinal σ, but Ecell and Ercell need

not be skeletally small. The next result is a variation of Bousfield’s cardinality
argument [10, 4.5.5].
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Lemma A.9. Let K be a cellular model category. Let σ be an infinite cardinal,
and let h be a σ-uniform homology theory.

Let f : A→ X be an inclusion of I-cell complexes in the class E and with A 6= X.
Then there is an I-cell subcomplex B of X such that ]B ≤ σ, B 6⊂ A, and B∩A→ B
and A→ A ∪B are in the class E.

Proof. We prove the following result: Let j and k be σ-uniform functors from K
to the category of sets. Assume that j(f) is injective and k(f) is surjective. Then
there is an I-cell subcomplex B of X such that ]B ≤ σ, B 6⊂ A, and g : B ∩A→ B
is an inclusion of I-cell complexes such that j(g) is injective and k(g) is surjective.

We construct an increasing sequence

B0 ⊂ B1 ⊂ B2 ⊂ · · ·

of I-cell subcomplexes of X such that:

(1) B0 6⊂ A.
(2) whenever two elements i1, i2 ∈ j(Bn∩A) map to the same element in j(Bn),

then they map to the same element in j(Bn+1 ∩A)
(3) the set k(Bn) maps onto the image of k(Bn+1 ∩A) in k(Bn+1).

We choose a finite subcomplex B0 of X that is not contained in A. This is
possible since A 6= X and because the gluing map from any I-cell to A factors
through a finite I-cell subcomplex of A, since the sources of the maps in I are
small.

Assume that Bn has been constructed. We construct Bn+1. Let i1, i2 ∈ j(Bn∩A)
be two elements which map to the same element in j(Bn). By our assumption on
f the two elements are sent to the same element under j(Bn ∩ A) → j(A). The
colimit axiom for j implies that there is a finite relative I-cell complex Bn → Ix1,x2

in X such that the two elements map to the same element in j(Ix1,x2
∩A).

Similarly, for every element y ∈ k(Bn) there is a finite relative I-cell complex
Bn → Sy in X such that the image of y in k(Sy) is in the image of k(Sy ∩A).

We make the following definition

Bn+1 = Bn ∪i1,i2 Ii1,i2 ∪y Sy
where the sum is over i1, i2 ∈ j(Bn ∩A) and y ∈ k(Bn). This complex satisfies the
conditions in the list above.

Let B be the union of all the Bn. The colimit axiom gives that B ∩A→ B is in
Eσ. The assumption that j and k are σ-uniform gives that ]B ≤ σ.

The Lemma follows by letting j and k be the two functors given in Definition
A.5. The inclusion of I-cell complexes A → A ∪ B is the pushout of B ∩ A → B
along the cofibration B∩A→ A. Hence the last claim follows from Lemma A.7. �

Lemma A.10. The class injEcell is equal to the class injEcell
σ .

Proof. Let f : X → Y be a map in Ecell. It suffices to show that f is a transfinite
composition of maps in Eσ. Lemmas A.6 and A.9 gives a transfinite sequence of
subcomplexes Xλ of Y containing X such that:

(1) Xλ → Xλ+1 is in Eσ
(2) if λ is a limit ordinal, then Xλ = ∪l<λXl

(3) if Xλ is strictly contained in X, then Xλ+1 is strictly larger than Xλ.

Zorn’s Lemma implies that Xλ = X for some λ [10, 4.5.6]. �
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Lemma A.11. The class of morphisms injEcell is equal to injErcell.

Proof. The model category K is left proper. Hence this is a consequence of Propo-
sition 13.2.1 in [10]. �

Proposition A.12. Let h be a σ-uniform homology theory for some cardinal σ.
Assume K is a proper cellular stable model category. Then there is a functorial
factorization of any map in K as a relative Eσ-cell complex followed by a map in
inj (E ∩C). Relative Eσ-cell complexes are contained in E ∩C. The class of maps
E ∩ inj (E ∩ C) equals injC = W ∩ F .

Proof. The factorization is a consequence of Lemmas A.10 and A.11 and the small
object argument [10, 10.5.16]. The second claim follows by Lemma A.7 and the
colimit axiom.

We prove the last claim. Let f : X → Y be a map in E ∩ inj (E ∩ C). Since
W ⊂ E and W ∩ F = inj (C) ⊂ inj (E ∩ C) it follows that injC ⊂ E ∩ inj (E ∩ C).
We now prove that any map f in E ∩ inj (E ∩ C) is a retract of a map in injC,

hence in injC. There is a factorization X
i→ Z

g→ Y of f such that i is in C and g
is in W ∩ F . Lemma A.6 gives that i is also in E, hence in E ∩C. Since f has the
right lifting property with respect to i the diagram

X

i

��

X

f

��
Z

g
// Y

lifts. Hence f is a retract of g. �

Let H denote the heart homology. Proposition A.12 applied to the homology
functor h(X) =

⊕
pH(X)p and n = ∞ gives Proposition 6.1. Proposition A.12

applied to the homology functors hn(X) =
⊕

p(Hd(p)+n(X))p, for all n, gives the
t-model structures in Proposition 7.3.
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