PICARD GROUPS OF DERIVED CATEGORIES
H. FAUSK

ABSTRACT. We investigate the group Pic(Day) of isomorphism
classes of invertible objects in the derived category of O-modules
for a commutative unital ringed Grothendieck topos (£,0) with
enough points. When the ring O, has connected prime ideal spec-
trum for all points p of £ we show that Pic(Da4) is naturally iso-
morphic to the Cartesian product of the Picard group of O-modules
and the additive group of continuous functions from the space of
isomorphism classes of points of £ to the integers Z. Also, for a
commutative unital ring R, the group Pic(Dg) is isomorphic to the
Cartesian product of Pic(R) and the additive group of continuous
functions from spec R to the integers Z.

1. INTRODUCTION

There has recently been much interest in Picard groups of monoidal
categories [2, 6, 7, 8, 9, 11, 12, 14]. In particular, the Picard group of
the derived category for a commutative unital ring has been calculated
in some cases [5, 12, 14]. The goal of this paper is to calculate the
Picard group of the unbounded derived category for any commutative
unital ring.

More generally, we calculate the Picard group of the derived cate-
gory for any commutative unital ringed Grothendieck topos (£, Q) with
enough points [4, 6.4.1, 11.1.1]. We assume that there is a small site
C such that £ is equivalent to the category of sheaves of sets on the
site C, and we let pt(&) denote the set of isomorphism classes of points
of £. We let M denote the category of left O-modules in £. The de-
rived category D, is obtained from the category of cochain complexes
of left @-modules by formally inverting cochain maps that induce an
isomorphism on cohomology.

The derived category Dy, is a symmetric tensor category. The de-
rived tensor product M*® ®@% N® in Dy is obtained as the ordinary
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tensor product of complexes if M*® or N* is replaced by a flat resolu-
tion [13]. In section 2 we recall the definition of flat complexes, and
construct flat resolutions for all complexes of O-modules.

Let (7,®, 1) be a symmetric tensor category. An object X in 7 is
defined to be invertible if there exists an object Y such that X ® Y
is isomorphic to the unit object I. The Picard group Pic(7) of 7 is
defined to be the group of isomorphism classes of invertible objects
in 7 (under the assumption that it is a set). The multiplication in
Pic(7) is the tensor product, and the class of the unit object is the
unit element.

Let R be a commutative unital ring, and let Dr denote the derived
category of complexes of left R-modules. For a topological space T let
C(T') denote the additive group of continuous functions from 7" to the
integers Z. In section 3 we prove that there is a natural split short
exact sequence

0 — Pic(R) — Pic(Dr) = C(spec R) — 0.

Let M* be an invertible complex of R-modules. The function W(M*®)
sends a prime ideal p to the unique integer n such that H"(M*), # 0.

In section 4 we prove that, if the ring O, has a connected prime ideal
spectrum for all points p of £, then there is a natural split short exact
sequence

0 — Pic(M) — Pic(Dr) = C(pt(€)) — 0.
In general, let C'(spec O) be the sheaf associated to the presheaf which

maps an object X to C(spec O(X)). We prove that there is a natural
split short exact sequence

0 — Pic(M) — Pic(Dp) % T(C(spec O)) — 0

where I' is the global sections functor.
I am grateful to J.P. May for many helpful suggestions, and for his
support. I would also like to thank M. Emerton for several suggestions.

2. THE DERIVED TENSOR PRODUCT AND FLAT RESOLUTIONS
We recall the following definition from [13, 5.1].

Definition 2.1. A complex F* is flat if for all acyclic complexes A®
the complex F'* ®o A® is acyclic. A flat resolution of a complex M*® is
a flat complex F'* and a map F* — M* inducing an isomorphism on
cohomology.

Note that flat complexes are sometimes called K-flat or g-flat com-
plexes to avoid confusion with complexes of flat objects.
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For an object X in the site C let X also denote the sheaf of sets in £
represented by the object X. Let jx : £|X — & be the localization map
[4, 5.2]. The O-module jxj5xO is called the free O-module generated
by X, and we denote it by Ox [4, 11.3.1].

For any point p of £ there is a canonical isomorphism of stalks

(OX>;D = EBX;D Op

where the sum is over the set X, [4, 11.3.5]. Hence (Ox), is a flat
O,-module for all points p of £. Since £ has enough points it follows
that Ox is a flat @-module.

There is a natural isomorphism [4, 11.3.3]

homp (Ox, M) = homg(X, M) = M(X).
For an element m € M(X) let m also denote the unique morphism

Ox — M in M. Let ad : 1 — j%jx1 be the unit map of the (jxi,j%)-
adjunction. The map
jxmoad(jx0) : jxO — jxOx — jxM

evaluated at 1x sends the unit element in j5O(1x) = O(X) to the
element m in M(X) = j5xM(1x).

Since the site C is small we can construct the following epic map of
O-modules

F(M) = ®xec Pmemx)\foy Ox — M.

When M = 0 we set FI(M) = 0. Since £ has enough points this gives
a canonical resolution of any O-module M by flat O-modules

d—3 1 d—2 0 d—1 a0
-+ — F(ker(d ")) — F(ker(d”)) — F(M) — M — 0.
Let us denote this resolution F*(M). For any map g : M — N there
is a canonical map F(g) : F(M) — F(N) such that d° o F(g) = god".

This gives a canonical map F*(g) : F*(M) — F*(N) of the resolutions.
Hence any bounded above cochain complex of O-modules

RN Mn—? N Mn—l S M" =0
has a resolution which is (the totalization of)
C— F(ME) = F (MY — F(M™) — 0.

We call this resolution the standard resolution. For each point p of
& the complex F*(M), is a complex of free O,-modules. Hence the
standard resolution localized at a point p is a bounded above complex of
free Op,-modules, which implies that it is a flat complex of O,-modules
[13, 3.2, 5.8]. Since £ has enough points it follows that the standard

resolution is a flat complex of O-modules. Hence all bounded above
cochain complexes have flat resolutions.
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For an O-module M and an integer n let M[n] denote the complex
which is M in degree n and trivial in all other degrees. In particular
the map M — M]|0] defines a monomorphism Pic(M) — Pic(Dpy).
Let 7<,M* denote the sub-complex of M* which is 0 in degrees above
n, the kernel of d : M™ — M"™"! in degree n, and agrees with M* in
degrees below n. The map 7<,M* — M?* induces an isomorphism on
cohomology groups in degrees less than or equal to n. The following
lemma is from [13, 3.3].

Lemma 2.2. Let M*® be a cochain complex of O-modules. Fix an
integer k. There exists a sequence

(] [ ] (]
Fg — Fey— Fpg— o

of flat complexes of O-modules mapping into M*® such that F1 =0 for
allq >n and p, : Fy — 7<, M*® induces an isomorphism on cohomology
for each n > k. Let F'* = colim(F?). The map F* — M?* is a flat
resolution of M?®.

Proof. For the given k, let )} — 7<;M*® be the standard resolution. We
now construct Fy inductively. Assume that p,—; @ F3_; — 7<p 1 M*®
is given. Let p,_, denote the composite of p,—; with the inclusion
T<n—1M*® — 1<, M*. Construct the following diagram:

" _1-1]
Fo B r M C | —— Fo [ Mo 1]

| |

Q.*g>Fﬁ—1[_1] Cg-

The cone C; | is a complex which is 0 in degrees above n, and we let

Q* — C,; | be the standard resolution. In particular Q' is 0 for i > n.

Define F to be C,[1] and let pu, : Cy[1] — 7<,M*® be defined by the
diagram above. The map u, induces an isomorphism on cohomology.
By construction F;! = 0 for ¢ > n, and since both Q* and F?_, are flat
complexes of O-modules F is a flat complex of O-modules. Note that
4 is the composite map

E* = Fr 5 M.
Since cohomology commutes with filtered colimits F'* = colim(F?) —

M?* is a cohomology isomorphism, and since each F? is a flat complex
F* is also a flat complex. O

Remark 2.3. A ring R (resp. an R-module) is a ringed space (resp. mod-
ule over the ringed space) when the site is the category with only one
object and one morphism.



PICARD GROUPS OF DERIVED CATEGORIES 5

3. THE PICARD GROUP OF THE DERIVED CATEGORY OF
R-MODULES

Let R be a commutative unital ring.

Lemma 3.1. Let M*® be an invertible object in Dgr. Then there exists
an integer m such that H'(M?®) = 0 for ¢ > m and H™(M®) # 0 is a
finitely generated R-module.

Proof. Replace M*® by a flat resolution F'* as in Lemma 2.2. R[0] is the
unit object in Dg. Let u : R[0] & F* ®g G* be an isomorphism in Dg

where G* is a flat complex. There is an isomorphism v : G®* ®p F* =
RJ[0] such that

Fo L@%F.(@RG.@RF. @F.
is the identity map in Dg.
By choosing a cycle representing the image of 1 under the isomor-
phism R = H(F* @z G*) we get a map of cochain complexes

n: R[0] = F* ®r G*

inducing the isomorphism on cohomology. Since F'* = colim(F}) the
map 7 factors through F; ®p G* for some integer n. By tensoring the
commutative triangle

F?®prG*

7

R[0] —= F* @ G*

with F* from the right and using the isomorphism G*® @ F* = R[0] in
Dpr we see that F'*® is a retract of F); in Dgr. Since F? = 0 for ¢ > n
and M* has nontrivial cohomology we conclude that there is an integer
m such that HY(M*®) = 0 for ¢ > m and H"(M*®) # 0. In particular
i, E — M?® is a cohomology isomorphism.

Next we show that F is a retract in Dy of a bounded complex
B*® which is a finitely generated R-module in each degree and satisfies
B% =0 for ¢ > m. As above there is a map of cochain complexes

n: R[0] — F) @r G*

inducing an isomorphism on cohomology. Let n(1) = %, jez fij ®r i
where f;; € F! and ¢;; € G~ for all i and j, and almost all the f; ;
are zero. Let B® be the subcomplex of F;, generated by all the f; ;.
Since almost all the f; ; are zero, B*® is a bounded subcomplex of F},,
so B? =0 for ¢ > m, and B" is a finitely generated R-module for each
integer n.
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The map n factors through B®* ®pr G*. Tensoring the factorization
with F3 from the right gives the commutative diagram

B* ®RG. ®RF¢;4:>B°

| |

F* T2 F @p G ®@p FS —== F*

Since both F? and G* are flat all the tensor products are derived
tensor products. We get that F . hence M?®, is a retract of B® in Dg.
In particular H™(M?*) is a retract of H™(B®) = B™/d(B™'). Hence
H™(M?*) is a finitely generated R-module. O

It is easy to see that if the cohomology of M*® is concentrated in one
degree, say n, then M* is isomorphic to H"(M*®)[n] in Dg. The proof
of the next result follows [5, V.3.3].

Proposition 3.2. If R is a local ring then up to isomorphism the
invertible objects in Dg are precisely the R[n| for any integer n.

~

Proof. The complex R[n] is invertible for any n since R[n]®% R[—n)]
R|0].

Let M*® ®% N* = R[0] in Dx. Since the complexes M*® and N*® are
bounded from above by Lemma 3.1, there is a convergent Kiinneth
spectral sequence

BT = @P Tork,(H'(M*),H/(N*®)) = HP™I(M* ®}; N*)

i+j=q
where the grading is so that Tor, is zero for p > 0. Since M*® ®@% N*® =
R[0] the cohomology group H"(M*® @} N*) is isomorphic to R when
r = 0 and is zero when r # 0. If H'(M*®) = 0 for i > m and H(N*) =0
for 7 > n, the spectral sequence gives us that the Kiinneth map

HY (M) @ H'(N*) — B (M 0 N*)
is an isomorphism. If, further, H™(M*®) # 0 and H"(N*®) # 0, then
by Lemma 3.1 both modules are finitely generated. One proves by
induction on the number of generators and by Nakayama’s lemma that
H™(M?®) ®r H"(N*®) is also nonzero, hence is isomorphic to R. The
ring 1 is local so up to isomorphism R is the only invertible R-module,
hence H™(M?*) = R and H"(N®) = R. We show that H'(M*®) = 0
whenever i < m. Assume by induction on [ > 1 that H'(M*) = 0 for
m —1 <i<m and that H(N®*) =0 for n — [ < i < n. We then have
that

Eg,—l _ Hmil(M.) D anl(No)
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survives to the E., term, hence H™/(M*) and H"'(N*) must both be
Z€ro.

Since the cohomology of M* is concentrated in degree m where it is
isomorphic to R, we get that M* = R[m] in Dg. O

There is a canonical Kiinneth homomorphism of degree 0 [1, IV.6.1]
a:H(F*) @ H(G*) — H*(F* ® G*).
The Kiinneth homomorphism is preserved by exact functors which com-
mute up to isomorphism with the tensor product.

Lemma 3.3. Let R be a commutative unital ring. If M*® is an invertible
object in Dy then

Pnez Hn(M.)
s an wnvertible R-module.

Proof. Let M*®* ®@% N* = R[0] in Dg. Localizing the Kiinneth homo-
morphism
a: H (M®) @ H*(N®) — H*(M* ®% N*)
at a prime ideal p in R gives us the Kiinneth homomorphism
0y B (M) @, HY(N,?) — HY(M," &, ).

By Proposition 3.2 the Kiinneth homomorphism «,, is an isomorphism
for all prime ideals p in R, hence « is an isomorphism. This means
that ’ .

Diez (H'(M®) @ H'(N*)) = R
and ‘ '

Bitj=g (H'(M*) @ H/(N*)) = 0
for all integers ¢ # 0. Hence we get that

(Bicz H'(M®)) @k (©jez H/(N*)) = R

and @;cz H'(M*) is an invertible R-module. O

Lemma 3.3 implies that for each prime ideal p in R, there is an
integer W(M*®)(p) = n such that H"(M*), = R, and HY(M*), = 0
for all ¢ # n. For a topological space T let C(T') denote the additive
group of continuous functions from 7" to the integers Z with the discrete

topology.
We recall a lemma about idempotents.

Lemma 3.4. There is a bijection between the open closed subsets of
spec R and the idempotents in R. Let ey denote the idempotent cor-
responding to the open closed set U. The bijection has the following
properties.
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(1) The subset specey R C spec R is U. The open closed set U is
{p € specR|eyR, = Rp}. If q € U then ey Ry = 0.

(2) The correspondence gives a natural isomorphism between the
Boolean algebra of idempotents in R and the Boolean algebra of
open closed subsets in spec R.

The second statement means that for any open closed sets U; and
Us, evnnu, = €u,€uy, €U,ul,—thnt, = €U, + €u, — 2eu,nt,, €x = 1 and
eg =0, and if f: R — S is a map of rings and U is an open closed set
in spec R then f(eff) = 6sspec(f)—1(U) in S.

Theorem 3.5. Let R be a commutative unital ring. There is a natural
split short exact sequence

0 — Pic(R) — Pic(Dg) 2 C(spec R) — 0.

Proof. From [10, 4.10] the set of prime ideals such that H"(M*®), = R,
is an open closed set in spec R. Hence p +— W(M?®)(p) defines a map
U : Pic(Dr)—C(spec R). It is clear from the proof of Proposition 3.2
that ¥ is a homomorphism. If W(M*®) = 0 then M* = H°(M*)[0] in
Dpg, and since H°(M*) is an invertible R-module M* is in the image of
Pic(R) — Pic(Dg).

We construct a splitting of . The spectrum of R is a compact space
so the image of any continuous function f : spec R — 7Z consists of a

finite set of integers, say ny, ..., n,. The disjoint subsets U; = f~!(n;)
of spec R are both open and closed, hence correspond to an orthogonal
basis of idempotents ey, ..., ey, in R. Define the invertible complex

O(f) to be & ey, Rn;]. By Lemma 3.4 the composite W o ®(f) is
equal to f.

We now check that ® is a homomorphism. Note that if f = 0 then
®(f) = R[0]. For two finite open closed partitions {U;} and {V;} of
spec R we have that

oL e, Rlni) ©r @)L ev, Rlmy] = @752 ev,v, Rlng + my).

Hence ® is a homomorphism. It is easy to see that the split short exact
sequence is natural. O

4. THE PICARD GROUP OF THE DERIVED CATEGORY OF
O-MODULES

Recall that (€, Q) is a ringed topos with enough points, and that M
is the category of left O-modules.
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Proposition 4.1. Let F'* be an invertible object in the derived category
of left O-modules. Then

@nGZ Hn(F.>
1s an invertible O-module.

Proof. Let F* ®% G* = O in Dy. Assume that F* is a flat complex of
O-modules as constructed in Lemma 2.2. The localization of F'* at a
point p of £ is then a flat complex of O,-modules. Taking the stalk at
a point p of the Kiinneth homomorphism « gives

a, - H¥(Fy) ®o, H(Gp) — H*(Fy @ G3)
in the category of O,-modules. By the proof of Lemma 3.3 «, is an
isomorphism for all points p. Since £ has enough points the Kiinneth

homomorphism « is an isomorphism. Hence we get as in the proof of
Lemma 3.3 that

(Biez H'(F*)) @0 (@52 H(G*)) = O
and @z H (F*) is an invertible O-module. O

Theorem 4.2. Let (£,0) be a commutative unital ringed Grothendieck
topos with enough points such that for all points p of € the ring O, has
a connected prime ideal spectrum. Then there is a natural split short
exact sequence

0 — Pic(M) — Pic(Dy) > C(pt(E)) — 0.

Proof. Let F* be an invertible complex in Dy,. By Proposition 4.1
there exists an O-module G such that

Biez H(F*) ®0 G = 0.

Let A" = H(F*) ®o G. Then @;czA* = O. Localized at a point p of
& this gives @iz Al = O,. From our assumptions on O, there is an
integer n, such that A,” = O, and A} = 0 for i # n,. Define W(F*)(p)
to be n,. Clearly ¥ is a natural homomorphism.

If U(F*) =0, then H(F*) @ G = O and H(F*) = 0 for all i # 0
so F* = H°(F*)[0] in Dy Hence the kernel of ¥ is the image of
Pic(M) — Pic(Dpy).

It remains to prove that ¥ takes values in C(pt(€)) and is split. We
need to prove that if A@ B = O then {p € pt(€)| A, = O,} is an open
closed set in pt(£). Denote the terminal object in € by e. The sheaf
of sets e associates to every object in the site C the one-point set.

Let 1: @« — O be the unit and 0 : @ — O the zero element. We can
compose these two elements with the projection from O = A & B to

A.
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There is an equalizer

in £, and S is a subobject of e. Points preserve limits so we get for
each point p of £ an equalizer

Sp —_— 0 Ap
0
in the category of sets. Since S, # () if and only if 1 = 0 in A, it follows

that
{pept(@)[A, =0} ={pept(&)]S5, =}

which by definition is an open set in pt(€) [4, 7.8]. The same argument
applied to B shows that {p € pt(£)|B, = 0} is also open in pt(£).
Since A,® B, = O, and O, has connected prime ideal spectrum exactly
one of A, and B, is zero, so the two sets {p € pt(£)| A4, = 0} and
{p € pt(€)| B, = 0} are complements of each other in pt(€). Hence
{p € pt(€)| A, = 0} is an open closed set in pt(&).

We now construct a splitting of U. Let f be a continuous function
pt(€) — Z. For each integer n let S, be the subobject of @ correspond-
ing to the open closed set f~!(n). For a subobject S in e, let Og be
defined by Og(X) = O(X) if S(X) = e and Og(X) = 0if S(X) =0
for X € C. By considering the zero and the unit maps 0,1 :.5; — Og,,
using the evident isomorphism @®;czOs,—O and our assumption on O,
it is easy to see that (Og,), = O, if and only if (S;), = . Define the
complex ®(f) to be Og, in degree i and to have trivial differentials.
Since Og ®p Or = Ognr for two subobjects S and T of e, it follows
that ® is a homomorphism. In particular

O(f) @o ®(-f) = @(0) = O[0].

So @ takes values in Pic(Dyy). Since (Og,), = O, if and only if (5;), =
e, the composite ¥ o @ is the identity on C(pt(£)). It is easy to see
that all three maps in the split short exact sequence are natural with
respect to maps of ringed topoi. O

As a special case we get the following result.

Corollary 4.3. Let (X, O) be a locally ringed space with an action by
a discrete group G [3]. There is a natural split short exact sequence

0 — Picg(X) — Pic(Dayy(x)) 2 CYX) — 0.
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Here shg(X) denotes the category of left G-O-modules, Picg(X)
denotes the group of isomorphism classes of invertible G-O-modules,
and C%(X) denotes the G-fixed subgroup of C(X) [4, 8.4.1].

We now generalize the theorem to ringed topoi where the O, are not
necessarily connected. Define a sheaf of abelian groups C(spec O) by
sheafifying the presheaf which maps an object X € C to C(spec O(X)).
Let T'(F) = homg (e, F) denote the global sections functor.

Proposition 4.4. There is a natural split short exact sequence

0 — Pic(M) — Pic(Dpy) A ['(C(specO)) — 0.

Proof. Let F* be an invertible complex in Dys. From Proposition 4.1
Dicz H'(F*) is an invertible O-module. Let G' be an O-module such
that @ez H'(F*) ®0 G = O. The direct sum (resp. tensor product) in
M is the sheafification of the presheaf direct sum (resp. tensor prod-
uct). Since O is unital there is a covering {V,} such that

@iez H'(F*)(V) ®or,) G(V5) = (Siez H'(F®) ®0 G)(V;) = O(V;)

for each . Define 9, : spec O(V,) — Z by letting 1.,(p) be the unique
integer i such that H'(F*)(V,), # 0. The maps {1, } are compatible so
they define an element W(F*) in T'(C(spec O)). It is easy to see that
the map VU is a homomorphism.

We now construct a splitting ® of W. Given f € I'(C(spec)),
there exists a covering {V,} and maps f, : spec O(V,) — Z such that
{f,} = f in I'(C(specO)). By Lemma 3.4 there are unique idempo-
tents e € O(V,) such that for each e the subspace spec (eZO(V)) C
specO(V,) is f;'(n). For a given n let ¢® = {e}. Then e" is an
idempotent element in I['(O), e"e™ = 0 for n # m, and ®;cz "O—0 is
an isomorphism of O-modules. Define ®(f) to be the complex which
is €"O in degree n and has trivial differentials. Then ® is a homomor-
phism from I'(C(spec ©)) to Pic(Dyy) such that ¥ o & is the identity
on I'(C(spec O)). The naturality is easily verified. O
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