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ABSTRACT

Part I. The G-equivariant analogues of the stable homotopy groups of spheres are
the equivariant homotopy groups of stable homotopy representations. Let G be a
compact Lie group and A(G) the Burnside ring of G. Let Z be a stable homotopy
representation with non-negative dimension function. We prove, with one extra hy-
pothesis on Z, that 7r6;(Z), as an A(G)-module, is isomorphic to a quotient of A(G)
tensored with an invertible A(G)-module. This is the equivariant analogue of the
non-positive stems.

Part II: We investigate the Picard group Pic(D ) of isomorphism classes of invert-
ible objects in the derived category of (O-modules for a commutative unital ringed
Grothendieck topos (£, 0) with enough points. Let C(pt(€)) denote the additive
group of continuous functions from the space of isomorphism classes of points of £
to the integers. When the ring Op has connected prime ideal spectrum for all points
p of & we show that Pic(Dy,) is naturally isomorphic to the Cartesian product of
C(pt(£)) with the Picard group of O-modules. Also, for a commutative unital ring R,
the group Pic(DpR) is isomorphic to the Cartesian product of Pic(R) and the additive

group of continuous functions from spec R to the integers.
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CHAPTER 1
INTRODUCTION

Part 1

Let G be a compact Lie group. A homotopy representation X is a based ho-
motopy retract of a finite G-CW complex such that the fixed-point space X H g
nonequivariantly homotopy equivalent to a sphere for every subgroup H of G. In
the G-equivariant stable homotopy category, the invertible G-spectra are exactly the
stable homotopy representations E_VE%OX , where V' is a real G-representation and
X is a homotopy representation. The G-equivariant analogues of the stable homo-
topy groups of spheres are the G-equivariant homotopy groups of stable homotopy
representations. A fundamental theorem due to G. Segal says that for finite groups
G the ring ﬂ'g (Sg) of homotopy classes of maps from the stable equivariant sphere
spectrum to itself is isomorphic to the Burnside ring A(G). T. tom Dieck gave a ge-
ometric definition of the Burnside ring of any compact Lie group G and proved that
it is isomorphic to w(? (S%) All G-equivariant stable homotopy groups are naturally
modules over the Burnside ring A(G).

The dimension function of a stable homotopy representation 7 = Z_VZ%OX is
defined to be dim (Z)(H) = n(H) — dimgV ¥ where X# ~ s"(#) T tom Dieck
and T. Petrie have proven that when Z is a stable homotopy representation with
dimension function identically zero, then the 0-th G-equivariant stable homotopy

group 7r6; (Z) is an invertible A(G)-module. Furthermore, the map sending Z to

wg (Z) induces an isomorphism between the group of isomorphism classes of stable
homotopy representations with dimension function identically zero and the group of
isomorphism classes of invertible A(G)-modules.

Let Z be a stable homotopy representation with nonnegative dimension function.

Let I(Z) be the ideal of A(G) consisting of all elements that act trivially on 7§ (Z).
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In particular Wg (Z) is an A(G)/I(Z)-module. Our main theorem gives the following
description of the equivariant non-positive stems as modules over the Burnside ring
for any compact Lie group G. If dim (Z) > 0, and the set of subgroups of G where
the dimension of Z is zero forms a cofamily, then there is an isomorphism of A(G)-

modules

6 (2) = AG)/1(Z) ®.a) P

where P is an invertible A(G)-module.

We prove the theorem by showing that ’/Tg(Z) is an invertible A(G)/I(Z)-module
and that the invertible A(G)/I(Z)-module 77(? (Z) comes from an invertible A(G)-
module. More precisely, for every maximal ideal m of A(G)/I(Z), we use obstruction

theory to construct a map f : S% — Z that we prove induces an isomorphism
fe: A(G §(z
x 1 A(G)m — 76 (Z)m

localized at m. We then show that W((); (Z) is a finitely generated A(G)-module. This
implies that w(? (Z) is an invertible A(G)/I(Z)-module. Finally, we prove that for
the ideals I(Z) of A(G) the homomorphism of Picard groups

Pic(A(G)) — Pic(A(G)/I(Z))

given by tensoring with the quotient ring A(G)/I(Z) is surjective. In particular, the
invertible A(G)/I(Z)-module Wg(Z) is isomorphic to A(G)/I(Z) ® 4(q) P for some
invertible A(G)-module P.

There is a similar description for any stable homotopy representation rationally.
When G is a finite group and Z is a stable homotopy representation it is easily proved

that
7§ (2) ®7,Q = A(G)/1(2) ®7 Q.

Here I(Z) is the ideal of A(G) consisting of elements that act trivially on Wg (Z2)®Q.
This is true for any compact Lie group provided that Z has non-negative dimension

function.



Part I1

The Picard group of the derived category for a commutative unital ring has been
calculated in some cases. We give a complete description of the Picard group of the
unbounded derived category for any commutative unital ring.

More generally, we calculate the Picard group of the derived category for any
commutative unital ringed Grothendieck topos (£, Q) with enough points. That & is
a Grothendieck topos means that there is a site C such that &£ is equivalent to the
category of sheaves of sets on the site C. We assume that C is small, and let pt(£)
denote the set of isomorphism classes of points of £. We let M denote the category
of left O-modules in £. The derived category D, is obtained from the category of
cochain complexes of left O-modules by formally inverting cochain maps that induce
an isomorphism on cohomology. It is a symmetric tensor category under the derived
tensor product.

Let (7,®,1I) be a symmetric tensor category. An object X in 7T is said to be
invertible if there exists an object Y such that X ® Y is isomorphic to the unit object
I. The Picard group Pic(7) of T is defined to be the group of isomorphism classes of
invertible objects in 7', when this is a set. The multiplication in Pic(7) is the tensor
product, and the class of the unit object is the unit element.

Let R be a commutative unital ring, and let D denote the derived category of
complexes of left R-modules. For a topological space T let C'(T') denote the addi-
tive group of continuous functions from 7" to the integers endowed with the discrete

topology. We prove that there is a natural split short exact sequence
0 — Pic(R) — Pic(Dg) % C(spec R) — 0.

Let M*® be an invertible complex of R-modules. The function W(M*®) sends a prime
ideal p to the unique integer n such that H"(M®), # 0.
More generally, for (£, 0) as above, if the ring Op has a connected prime ideal

spectrum for all points p of £, then there is a natural split short exact sequence

0 — Pic(M) — Pic(D ) 2 C(pt(£)) — 0.
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In general, let C'(O) be the sheaf associated to the presheaf which maps an object X
to C(spec O(X)). We prove that there is a natural split short exact sequence

0 — Pic(M) — Pic(D ) % T(C(0)) = 0

where I" denotes the global sections functor.



Part 1

The Non-Positive Equivariant

Stems



CHAPTER 2
THE NON-POSITIVE EQUIVARIANT STEMS

2.1 Introduction

Let G be a compact Lie group. A homotopy representation X is a based homotopy
retract of a finite G-CW complex such that the fixed-point space X H g nonequiv-
ariantly homotopy equivalent to a sphere for every closed subgroup H of G. In the
G-equivariant stable homotopy category the invertible G-spectra are exactly the sta-
ble homotopy representations E_VE%OX , where V' is a real G-representation and X is
a homotopy representation [8]. We use the letter Z to denote stable homotopy repre-
sentations. The G-equivariant analogues of the stable homotopy groups of spheres are
the G-equivariant stable homotopy groups 7r8; (Z) of stable homotopy representations.
The groups Wg (Z) are naturally modules over the Burnside ring A(G) = 7T8; (S%)
We describe W(? (Z) as a module over the Burnside ring for certain homotopy repre-
sentations. For a survey on the Burnside ring for compact Lie groups and its prime
ideals, see [16, Chap. 17].

Let ®G denote the topological space of conjugacy classes of closed subgroups H of
G with finite Weyl group WH = NgH/H. It is a countable metric space, hence has
a basis for the topology consisting of open-closed sets. T. tom Dieck proved that for
any compact Lie group G, the orders |IW H| are uniformly bounded for all (H) € ®G
[4]. Let the order of a compact Lie group G be the least common multiple of the
order of all the Weyl groups W H for (H) € ®G. We denote the order of G by |G].

We associate to any stable homotopy representation Z = E_VE%OX a subspace
of ®G and an ideal of A(G).

Definition 2.1.1. Let £(Z) be the following subspace of ®G"

E(Z) = {(K) € ®G | H)(ZX) = 7 with trivial W K-action}.

6
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In other words, (K) € £(Z) if and only if SVE & 5n(K) ~ XK for some integer
n(K), and H”(K)(SVK) ~ gUK)(XK) as WK-modules. When |G| is odd £(Z) =
{(K) € oG | SVE XY since the finite groups |W K| are then of odd order, and
hence can only act trivially on Z.

A cofamily of subgroups of G is a collection of closed subgroups of GG that is closed
under conjugation and passing to larger subgroups. The class of subgroups of G' with
finite Weyl group is a cofamily of subgroups of G [2, I1.5.7]. Hence we say that £(Z)
is a cofamily if whenever (K) < (H) and (K) € £(Z), then (H) € £(Z). It turns out
that if

£'(z) ={(K) e 2G| X" ~ (s")"}

is a cofamily, then we have that £(2) = £'(2).

The Burnside ring of any compact Lie group has Krull dimension one. The min-
imal prime ideals of A(G) are the ideals ¢(H,0), for any (H) € ®G, consisting of
all stable homotopy classes of maps « : S% — S% such that deg(aH) = 0. The
maximal prime ideals of A(G) are the ideals ¢q(H,p), for any (H) € ®G and prime
number p, consisting of all stable homotopy classes of maps « : Sg — S% such that
deg(aff) = 0 mod p. Here, and later, o denotes the geometrical fixed point functor
applied to the map « [14, I11.9]. The geometrical fixed point map of a stable map
from a finite G-CW complex to a G-space is obtained by taking the pointwise fixed

point map of some unstable representative of the map.

Definition 2.1.2. Let £ be any subspace of ®G. Define the A(G)-ideal I(£) to be

(&)= 1 q(H,0).
(H)e&

The ideal I(€) consists of all stable maps « : Sg — Sg such that the degree
of af is zero whenever (H) € £. We denote for brevity I(£(Z)) by I(Z). The
dimension function dim (Z) : ®G — Z is defined by dim (Z)(H) = n(H) — dim VH
where X = gn(H) When the dimension function dim (Z) > 0 we have that Wg(Z)
is an A(G)/I(Z)-module. This follows since [ (Z)?Tg (Z) consists of stable G-maps
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with null-homotopic fixed-point maps for each subgroup of G. By obstruction theory
such G-maps are null-homotopic (Theorem 2.2.4).
Nonequivariantly 7g(S™) = 0 when n > 0 and 7(S%) = Z. We prove the follow-

ing, partial, G-equivariant analogue.

Theorem 2.1.3. Let G be a compact Lie group, and let Z be a stable homotopy
representation with dimension function dim(Z) > 0 and E(Z) a cofamily. Then

there is an isomorphism of A(G)-modules
6 (2) = AG)/I(Z) ® ) P

where P is an invertible A(G)-module.

Since H*(VE; Z) and H* (XX Z) are isomorphic as W K-modules whenever (K) €
&(Z), and since we can assume that V' is a complex representation containing a copy

of the trivial representation, we get the following result as in [5, 10.2.5].

Proposition 2.1.4. Let Z be a stable homotopy representation with dimension func-
tion dim(Z) > 0. Let (H) € £(Z) with |W H| relatively prime to p. Then there is a
G-map f : Sg — 7 such that deg(fH) is relatively prime to p.

The main part of this paper, section 2.2, is devoted to prove that for any f as in

the Proposition above, the induced map localized at ¢q(H, p)

fe (A T(D)gi1.p) = 7§ (Z) 11 -

is an isomorphism. When £(Z) is a cofamily, we show that any maximal ideal in
A(G)/I(Z) is of the form ¢(H,p) where (H) € £(Z) and |W H| is relative prime to
p. Hence we get that 7r6; (Z) is locally isomorphic to A(G)/I(Z). We also prove that

wg (7) is a finitely generated A(G)-module. Together this gives the following result.

Theorem 2.1.5. Let G be a compact Lie group. Let Z be a stable homotopy repre-
sentation with dimension function dim(Z) > 0 and E(Z) a cofamily. Then Wg(Z) is
an invertible A(G)/I(Z)-module.



In section 2.3 we prove the following result.

Proposition 2.1.6. Let Z be a stable homotopy representation with E(Z) closed in
®G. Then any invertible A(G)/I(Z)-module is isomorphic to A(G)/1(Z) ® 5q) P
for some invertible A(G)-module P.

Hence when £(Z7) is a cofamily the invertible A(G)/I(Z)-module Wg(Z) is iso-
morphic to
AG)/1(Z) @ ) P

for some invertible A(G)-module P. This is Theorem 2.1.3.

It is natural to make the following conjecture.

Conjecture 2.1.7. For any stable homotopy representation Z with non-negative di-

mension function dim (Z) > 0, there is an isomorphism of A(G)-modules
6 (2) = AG)/1(Z) ®.a() P

where P is an invertible A(G)-module.

In section 2.4 we give some evidence for the conjecture. We prove that the conjec-
ture is true if we invert the order of the group, provided that £(7) is a closed subspace
of ®G. We also quote a theorem from [12, 14] describing wg(Z) ®7z Z[|G|~1] when G
is a finite group and Z is any stable homotopy representation.

The subspace £(Z) of ®G is closed when G is a finite group (since ®G is discrete).
It is closed for all compact Lie groups of odd order (since the dimension function is
locally constant). If £(Z) is a cofamily then £(Z) is also closed. One might expect
E(Z) to be closed for any compact Lie group and any stable homotopy representation.
In general £(7) is always open.

In the last section, included for completeness, we generalize, and give an alterna-
tive proof of Proposition 2.1.6. When G is a finite group we show that for any ideal
I of A(G) the map

Pic(A(G)) — Pic(A(G)/I)

given by tensoring with A(G)/I is surjective.
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2.2 Non-positive Equivariant Stems

This section is concerned with the proof of Theorem 2.1.5. Let Z = E_VE%OX
be a stable homotopy representation with dim Z > 0. We can assume without loss
of generality that V' is a complex representation containing a copy of the trivial
representation. We let V' and X vary as needed (suspend up with a representation),
in order to realize any given stable map Sg — Z as the stabilization of an unstable
map SV — X.

For every (H) € £(Z) choose an orientation of the fixed point spaces of SV and
X. For any G-map f : SV — X, let deg(f) : £(Z) — Z be the function that sends
(H) to the degree of the map fH# : SV = XH. Since dim(Z) > 0 the fixed point
map fH sV? o XH s null homotopic if (H) ¢ £(Z). We only use the absolute
value of the degree function. Hence the choice of orientations does not matter. From
the proof of [5, 5.6.4], we get that for all f: S — X the absolute value of the degree
function

|deg(f)|: £(Z) = N

is locally constant.

For two based G-spaces X and X' let [X, X'] denote the pointed set of homotopy
classes of G-maps from X to X’. We only consider spaces such that this is an abelian
group. For any two based G-spaces X and X' let {X, X'} denote the abelian group
of stable homotopy classes of G-maps from X to X’. When X is a retract of a finite
G-CW complex

{X, X"} = colimyr[X A ST, X" A SU

where the direct limit is over all complex G-representations U. In particular any
stable map between homotopy representations can be realized by a suitable unstable

map.
Lemma 2.2.1. The subspace E(Z) is an open subset of ®G.

Proof. Let (H) € £(Z). Then by Proposition 2.1.4 there is a map f : SV — X such
that deg(f) # 0. Both SV and X have finite orbit types [13]. Hence there is an
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open neighborhood U of (H) in ®(G) such that for all (K) € U the map fX equals
the map f. Hence deg (f5) £ 0 for all (K) € U, and U C £(Z). 0O

Lemma 2.2.2. If £(Z) is a cofamily, then E(Z) is a closed subset.

Proof. A theorem of Montgomery and Zippin says that for any closed subgroup H of
G there is an open neighborhood of H, in the space of all closed subgroups, consisting
entirely of subgroups of G subconjugate to H. Hence the complement of any cofamily

is open. ]
Let £ be a subset of ®G. We now describe the prime ideals of A(G)/I(£).

Lemma 2.2.3. The prime ideals of A(G) containing I(€) = (\(meg ¢(H,0) are
exactly the prime ideals q(H,0) and q(H,p) of A(G) where p is any prime number
and (H) € &, the closure of £ in ®G.

Proof. Let &' = {(K) € ®G | q(K,0) D I(£)}. Clearly £’ > &€ and I(&') = I(£). If
(K) ¢ &' then there is an o € A(G) such that deg o # 0 and degaff = 0 for all
(H) € E. Since |deg]| is a locally constant function there is an open neighborhood U
around (K) in ®G where |dega| is nonzero, so U does not meet &'. Hence &' is a
closed subset of ®G.

If (K) € £, then there is an open-closed neighborhood U of (K) that does not
meet £. Since |G|C(G) C A(G) (see [16, chap. 17]) we obtain that the characteristic
function in C(G), defined to be |G| on U and 0 outside of U, is in A(G). Hence
(K) € &'. We conclude that & = &. O

The lemma gives that the prime ideals of A(G)/I(€) are exactly the quotients
in A(G)/I(€) of the prime ideals ¢(H,0) and ¢(H,p) of A(G), where p is any prime
number and (H) € £. We use the same notation for a prime ideal of A(G)/I(Z) as
for the corresponding prime ideal of A(G).

For any complex G-representation V' containing a copy of the trivial representation
the assumption of the equivariant Hopf Theorem [5, 8.4.1] is satisfied for S V, and we
get the following result. Let iso(V') denote the isotropy classes of S v,
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Theorem 2.2.4. The degree function

deg : [V, X] — 11 Z
(H)eiso(V)NE(Z)
is injective. Let H € iso(V)NE(Z) and f €[SV, X]. Then for any g € [SV, X] with
deg (f5) = deg (¢%) for all (K) € iso(V) N E(Z) with (K) > (H), we have that

deg () = deg (g™) mod |WH|.

Moreover given f and any integer n, there is a g € [SV,X] such that deg (fK) =
deg (¢%) for all (K) € iso(V) N E(Z) with (K) > (H) and

deg (f1) — deg (") = n|WH]|.
In particular the degree map

deg : {SV, X} > [] z
£(Z)
is an injective homomorphism.
We now digress to calculate the homotopy groups of stable homotopy representa-

tions of the form X3S W for any real representation W.

Lemma 2.2.5. Assume there is a map f : SV — X such that deg(fH) = +1 for all
(H) € £(Z). Then

is an isomorphism of A(G)-modules.

Proof. We first prove that we get an isomorphism unstably. The statement in the
lemma follows by stabilizing, replacing S V. X by SVtU X ASU, and then taking the
direct limit over all complex G-representations U.

Let Iy, be the ideal of the ring [SV, SV] consisting of maps a with deg(a®) =0
for all (K) € £(Z). Let the map f : SV — X induce the horizontal homomorphisms
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in

Ix

[Svasv]/IV [SV,X]

degl ol ldeg

[meisov)nez) Z —=Tl(m)eiso(v)ne () -

The degree functions are injective, hence [SV, SV]/I;; — [SV, X] is injective. By the
congruence relations, from the above theorem, and induction on the orbit type of S V,
we get that [SV,SV]/Iy — [SV, X] is surjective. Hence we conclude that the map

fx is an isomorphism. O

For a real representation W, the inclusion S — SW satisfies the requirement in

lemma 2.2.5.

Corollary 2.2.6. Let W be a real representation. Then there is an isomorphism
(=X = A@)/I(5FS™).

Let ®(H, p) be the subspace of ®G consisting of all (J) such that ¢(H, p) = q(J, p).
For every (H) and prime p there is a unique element (K) € ®(H, p) such that |W K|
is relatively prime to p [5, 5.7.2].

Proposition 2.2.7. Let Z be a stable homotopy representation such that £(Z) is a
cofamily and dim(Z) > 0. Let (H) € E(Z) be such that |W H| is prime to p. Then
for any stable map f : S% — Z such that the degree of fH s prime to p, the degree
of f& is also prime to p for all (K) € £(Z) N ®(H, p).

Proof. Step 1: Assume that (K) and (L) are in £(Z) N ®(H, p) and that K < L with
quotient group L/K a p-group. We then prove that if the degree of fL is prime to p,
then the degree of fK is also prime to p. We denote L/K by P.

The geometric fixed point functor and the restriction to subgroup functor both
preserve smash products of spectra and sphere spectra [14, I1.9]. The stable homotopy
representation Z is an invertible G-spectrum [8, 0.5]. This means that there is a G-

spectrum Y such that Z AY ~ S%. The K-geometric fixed point functor applied
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to this equivalence gives that ZEANYE ~ S%, g - Restriction to the subgroup P =
L/K < WK gives that ZK is an invertible P-spectrum.

Whenever K < H and |WK]| is finite then |W H]| is also finite [2, I1.5.7]. Hence,
since £(Z) is a cofamily, we have that any closed subgroup J between K and L is
also in ®(H, p) NE(Z) [16, 17.3.4]. So the dimension of Z” is zero for all subgroups J
between K and L. All invertible spectra are stable homotopy representations, so the
P-spectrum Z K is a stable homotopy representation with identically zero dimension
function [8]. As in [8, 3.4] we have that there is a map of P-spectra h : ZK — S?D
such that the degree of (ho K )P is prime to p (note that P as a subgroup of itself
has trivial Weyl group), hence h o fK € q(P,p). For any subgroup @ of the p-group
P we have that ¢(Q,p) = ¢(P,p) as ideals in A(P) [5, 5.7.9]. In particular, when
Q = {0} we get that the degree of K is also prime to p.

Step 2: We now consider the general case. We follow tom Dieck [5, p. 114]. Let H be
a subgroup of G with W H prime to P. For every (K) € ®G with ¢(H,p) = q(K, p)

there is a finite sequence
K=Ky<Ki<Kg<Kgzg<---<Ky

where K, is conjugate to H, and each K; < K1 is of one of the following two types:
1. An extension of the form K; < K; 1 where K;1/K; is a p-group.

2. There is an infinite sequence of extensions
K, <Pi<Po<aPy3<q---

where each quotient group Pji1/P; is a p-group, U;P; = K;,1, and the se-
quence of the (P;j) converges to (Kj 1) in ®G.

For inclusions of subgroups of type (1), if the degree of FKi+1 is prime to p then the

degree of f%i is prime to p by Step 1.
We prove the same statement for inclusions of subgroups of type (2). Assume that

the degree of fKi+1 is prime to p. The map f : Sg — 7 is realized by an unstable
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map f : sV - X , where X is a homotopy representation. In particular both sV
and X have finite orbit types [13]. It follows that fKiJrl = fP m for some m. Hence
deg(fFm) = deg(f%i+1) is prime to p. Repeated use of the result in Step 1 gives that
the degree of 1Xi is also prime to p.

Finally we conclude that if the degree of fL is prime to p then the degree of fK

is also prime to p. O

Corollary 2.2.8. Let Z be a stable homotopy representation with non-negative dimen-
sion function dim(Z) > 0, such that £(Z) is a cofamily. Then for every (H) € £(Z)
and every prime number p there is a G-map [ : S% — Z such that deg(fH) IS

relatively prime to p.

Proof. There is a subgroup K containing H, with |W K| relatively prime to p, whose
conjugacy class is in ®(H, p). Hence the result follows from Propositions 2.1.4 and
2.2.7. O

The following description of the Burnside ring localized at its prime ideals is from
14, V.5.1].

Proposition 2.2.9. The localization of A(G) at a minimal prime ideal q(H,0) is
Q. The localization of A(G) at a mazimal ideal q(H,p) is (A(G)/1(H,p)) ) where
I(H,p) = Nq(K,0) and the intersection is over (K) € ®(H,p).

More generally, we obtain the following two propositions by mimicking the proof
of [14, V.5.1].

Proposition 2.2.10. Let £(Z) be a closed subspace in ®G. The localization of
A(G)/I(Z) at a minimal prime ideal q(H,0) is Q. The localization of A(G) at a
magzimal ideal g(H,p) of A(G)/1(Z) is (A(G)/J(Z; H,p))p) where

J(Z:H,p) ={a € AG) | deg (™) =0 for (L)€ E(Z)N®(H,p)}.

Proof. The kernel of the localization map is contained in J(Z; H,p)/I(Z), since the
degree function of any element in A(G) — ¢(H, p) is never zero on £(Z) N ®(H,p).
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We show that J(Z; H,p) is zero localized at ¢(H,p). Assume o € A(G) is such that
deg (o) = 0 for all (L) € £(Z) N ®(H,p). Since the absolute value of the degree
function is locally constant, there is an open set U containing £(Z) N ®(H, p) such
that deg (o) = 0 for all (L) € U.

For all (K) € £(Z) — ®(H,p) we have that ¢(K,0) ¢ q(H,p) [5, 2.5.7] so there
exists a Sx with deg (Bx)% = 0 and Br ¢ q(H,p). By assumption &£(Z) is a
closed subset of ®G, hence compact. So £(Z) N (PG — U) is compact. We can
then find finitely many (K7), (K2), ..., (Kp) € £E(Z) — ®(H, p) such that the product
B = BK,BK, Bk, 18 zero on £(Z) N (@G — U). Since q(H,p) is a prime ideal we
have 8 & q(H,p). The product a8 € I(Z), so

J(Z; H,p)/1(Z) C ker(A(G)/1(Z) = (A(G)/1(Z)) (1 p))-
Hence we have an injection
(A(G)/J(Z; H,p)) ) — (AG)/1(Z))q(m,p):

Since I(H,p) C J(Z; H,p) we get that the map is an isomorphism using Proposition
2.2.9. ]

Proposition 2.2.11. Let £(Z) be a cofamily. The localization of {SV,X} at a
minimal prime ideal q(H,0) of A(G)/I(Z) is Q. The localization of {SV,X} at a
mazximal ideal q(H,p) is ({SV,X}/j(H,p))(p) where
J(Z;H,p) = {h e {SV, X} |deg (W%) =0 for (K)e ®(H,p)}
Proof. For every f € {SV, X} the absolute value of the degree map
|deg ()| : (%) = N

is continuous. Using Proposition 2.2.7 we obtain, as in the previous proposition, that

J(Z,H,p) = ker({SV, X} = {SV, X} 1))
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so{SV,X}/J(Z;H,p) — {SV, X}q(H,p) is an injective homomorphism. Since {SV, X1®
I(H,p) C J(Z; H,p) we have that

(V. X}/J(2; H.p) = {SV, X}/ J(Z: H,p) ® 4 AG)/1(H, p).
Hence

({SY, X}/ J(Z: H,p)) ) = {SV, X}/ J(Z; H,p) @ 4y A(G) grr )

maps surjectively to

{87, XY gmrp) = {87 X} ®a6) AG) g1

We conclude that ({SV, X}/J(Z; H,p))p) < {SV,X}q(ij) is an isomorphism. [

The propositions above and Theorem 2.2.4 give the following commutative dia-

gram with injective vertical maps.

(AG)/I(Z))gat.p) LSV, X }yia1.p)

degl ldeg
E(Z2)N®(H,p) “(p) — LL&(Z)n2e(H p) ~(p)

If W H | is relatively prime to p, and if f : SV - X satisfies deg (fH) # 0 mod p, then
by Proposition 2.2.7 we get that deg (f%) # 0 mod p for all (K) € £(Z) N ®(H, p).

Hence the lower horizontal map deg ( f)( is an isomorphism. In particular this

p)
implies that

Fo  (AG)1(Z)) gz ) = 18V X ga1 )

is injective. We will prove surjectivity of f« by showing that the cokernels of the
vertical degree homomorphisms in the diagram above are isomorphic.

More precisely, we will use unstable approximations where the degree functions
inject into a finite product of the integers. The map between any pair of these

cokernels is surjective, and we show that the two cokernels have the same finite order,
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hence the map between them is an isomorphism. We then stabilize to show that fx
is an isomorphism localized at q(H, p).

Let U be any complex G-representation. For convenience we denote the ring
[SVOU sVOU] by Ry, and the Ry-module [SY®U| X A SU] by M. We have that

colimgr Ry = A(G).

and
colimy My = {SV, X} =~ 7§ (Z).

Definition 2.2.12. Let Jiy C Ry be the ideal of homotopy classes of G-maps « :
SVOU _y V&U guch that deg (aX) = 0 for all (K) € ®(H,p)NE(Z). Let Jy C My
be the submodule of homotopy classes of G-maps 5 : SVeU 5 X A SU such that
deg (BK) = 0 for all (K) € ®(H,p).

These ideals are defined so that the maps below are injections
Ry /Jy — A(G)/J(Z; H, p)
My /Jy = {S", X}/J(2; H.p).
Lemma 2.2.13. The canonical maps
colimyy (Ry [ Ju) (p) = (A(G)/I(Z)) g1 p) = (A(G)/I(Z; H, D)) ()

COlimU(MU/jU)(p) — {SV, X}q(H,p) = ({SV, X}/j(Za Ha p))(p)
are 1somorphisms.

Proof. We prove the first isomorphism. The proof of the second is similar. Colimits
commute with localization, so it is enough to prove the isomorphism before localizing

at p. We have injections

SOV, SV Jy — A(G)/J(Z; H, p).
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Since colimy;[SVEU, SVOU] 5 A(QG) is an isomorphism it is easy to see that
colimy[SVOV, SOV L1 — A(G)/J(Z; H, p)

is an isomorphism. O

The congruence relations in Theorem 2.2.4 imply that the degree maps give rise

to injective homomorphisms

Ry — [Lisover)Z and My — [lisover)ne(z) Z-

To describe the order of the cokernels of the maps above we introduce some notation
n
modeled on Proposition 2.2.4. Let R ﬁ) [ Z be a subgroup with the following prop-
=1
erty: The values for the k-th coordinates of elements in R with the /-th coordinates

all zero for | > k are exactly wyZ, where wy, is some positive integer.
n k
Filter P = [] Z by letting P, = [[ Z x 0. The associated graded group is
1=1 1=1
" 1Z. Let Ry, = ¢~ (Pg). This gives a filtration of R. Let C}, = coker(P, — R})

and C,, = C'. We have that
gr(R) — gr(P) — gr(C)

is a short exact sequence. The k-th term in gr(C), Cp/Cr_1, is the cokernel of
Rp/Rj_1 — Z. The image of this map is the k-th coordinate of all elements f in
R such that f(i) = 0 for all # > k + 1. This is by assumption exactly w;Z. Hence
Cr/Cl_1 = Z]wi .

Definition 2.2.14. Let Ay =iso(V & U)NE(Z) N ®(H, p).

Lemma 2.2.15. The orders of the cokernels
Cy = coker(Ry /Jy — HAU Z) and

Cy = coker(My | Jy — HAU Z)
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are equal.

Proof. We use the above remark for

Ry — Hiso(VG}U) L.

Order the isotropy classes of iso(V @ U) so that 7 < j implies that (H;) < (H;). By
Theorem 2.2.4 we get that the k-th term of the associated graded of

Cpr = coker (Ry — [isover) Z)

is Z/|W Hi|Z.
In the following diagram the horizontal sequences are exact, and the two leftmost
vertical sequences are exact. It then follows that the rightmost vertical sequence is

also exact.

Ry /Ty s, Z CTU
Ry [liso(veu) Z Cy
Ju [iso(ver)-ay Z— Uisovar)-ay Z)/Ju

Hence the associated graded of the cokernel Cp; is the cokernel of

@iso(V&BU)—AU Z — gr(Cb—)

which is
D wyery, Z/IWH|Z.

The same argument applied to

coker (My — Hiso(V@U)ﬂg(Z) Z)
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and the ideal jU gives that the associated graded of the cokernel C’U of

My/Jy = [a, Z
is
Dyeny 2/IWH|Z.
Hence the orders of both Cf; and Cy are H(H)EAU |WH,|. O

Proposition 2.2.16. If f : SV — X is a map such that deg (fH2) 2 0 mod p, and
|\W H| is prime to p, then the map

[« 1 (AG)I(Z)) g p) — {SV’X}q(H,p)

s an tsomorphism.

Proof. By Proposition 2.2.13 it is enough to prove that for every U the map

e s (Ry/J) ) = (My [ Jy) )

is an isomorphism. Consider the following map of short exact sequences

(Ry/Ju)(p) — (ay ) p) — Cip)
| dos ()] aoe )
(My/Jy) ) — (ay 2) ) —= Cpy-

By Proposition 2.2.7 the values of deg (f) on Ay are all relatively prime to p, so
we get that deg (f) : (HAU Z)(p) — (HAU Z)(p) is an isomorphism. Hence the
map C,y — Cp) is surjective. Since C is a finite group |C,)| is the p-part of |C],
By the previous lemma the orders |C,)| and |C,)| are equal. Hence the surjective
map C(p) — C@) must also be injective. The five-lemma implies that fi is an

isomorphism. O

Proposition 2.2.17. Let Z be a stable homotopy representation with £(Z) a cofamily
and dim Z > 0. Then np(Z) is a finitely generated A(G)-module.



22

Proof. For any (H) € £(Z) choose a prime number p relatively prime to |[WH].
There is, by Proposition 2.1.4, a map f : S% — Z such that deg(f7) # 0 mod p.
Since | deg f| is locally constant, there is an open neighborhood Uy of (H), such that
|deg fH| = | deg f¥| for all (K) € Up. Hence by Proposition 2.2.16 we get that the

induced map
fe : (AG)/1(2)) gk ) = m0(Z) (k1)

is an isomorphism whenever [ is a prime that does not divide | deg f| and (K) € Uy
with |W K| prime to .

For each of the primes p/ that divides |deg f¥| there is by corollary 2.2.8 a map
g: S(? — Z such that deg(gH) # 0 mod p’, hence by Proposition 2.2.16, it induces

an isomorphism
9%+ (AG)/1(Z2)) (i gty = ™0(Z) gk )

for all (K) with |W K| relatively prime to p’ in some neighborhood of (H) in £(Z).
Hence for every (H) in £(Z) there is an open neighborhood Vi of (H) in £(Z)
and a finite set of maps from Sg to Z, such that at least one of the maps induces
an isomorphism localized at ¢(K,p) for any prime p and any (K) € Vg with [WK]|
prime to p.
The subset £(Z) is a compact space by Lemma 2.2.2. Since £(7) is a cofamily,
any maximal ideal is of the form ¢(H,p) where (H) € £(Z) and |W H| is prime to p,

it follows, by a compactness argument, that there are finitely many maps

flofores fu: 8% = 2

such that for any maximal ideal ¢(H,p) of A(G)/I(Z), at least one of them induces

an isomorphism on homotopy groups localized at ¢(H,p). So the map
OF_ 1 fi  ©f1A(G)/1(2) — =§ (2)

is surjective localized at all the maximal ideals of A(G)/I(Z), hence is a surjective

homomorphism. This proves that wg (Z) is a finitely generated A(G)/I(Z)-module.
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O

From [1, II.5] Theorem 1 and 3 we know that an R-module M is invertible if and
only if

1. For all maximal ideals m of R we have that My & Rn
2. M is a finitely generated R-module.
The last two Propositions now imply Theorem 2.1.5.

Remark 2.2.18. When Z is a stable homotopy representation with dim(Z) = 0 it
turns out that £(Z) = ®G [5, 10.16] [8]. It also follows from the arguments in the
above references that whenever the subset £/(Z) = {(K) € G | XK ~ SVK} is a
cofamily, then &'(7) = £(Z).

The group of isomorphism classes of stable homotopy representations with dimen-
sion function identically zero is isomorphic to the group of isomorphism classes of
invertible A(G)-modules. The isomorphism is given by sending X to 7r6; (X). More-
over, if X is a stable homotopy representation with dimension function identically
zero, then

n§ (V) @) 76 (X) =76 (V A X)

for any G-spectrum Y [8]. Let Z be any stable homotopy representation with non-
negative dimension function such that £(Z) is a cofamily. Then by Theorem 2.1.3
there is an invertible A(G)-module P such that G(Z) = AG)/1(2)® (@) P Let P’
be any invertible A(G)-module. There is a stable homotopy representatlon X with
identically zero dimension function such that wg (X)=Plg A(G) P’ where P71 is
an inverse of P. The stable homotopy representation Z A X has the same dimension

function as Z and
7§ (Z N X) =2 AG)/1(Z) ® 4 P

In particular we can choose a stable homotopy representation Z’ with dim(Z’) =
dim(Z) such that

6 (2") = A(G)/1(2).
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2.3 Invertible A(G)/I(Z)-modules
In this section we prove Proposition 2.1.6.

Proposition 2.3.1. Let G be a compact Lie group, and let £ be any open-closed
subspace of ®(G). Then

AG)/I(E) ® — : Pic(A(G)) — Pic(A(G)/I(E))

18 surjective.

Proof. Let C' denote the ring of continuous functions from ®G to the integers, and
C(&) the ring of continuous functions from £ to the integers. T. tom Dieck proved

that we have a diagram

(c/1G1e)* Pic(A(G))

| L

(CE)/1GIC(€))* — Pic(A(G)/1(€)) —=0

0

where the horizontal maps are surjective [5, 10.3.8]. The left vertical map is surjective

by the assumption on £. Hence Pic(A(G)) — Pic(A(G)/I) is also surjective. O

The Lemmas 2.2.1 and 2.2.2 now imply Proposition 2.1.6.

2.4 The Rational Stems

In this section we denote the order of a compact Lie group G by g.

Lemma 2.4.1. If p is relatively prime to g then A(G)q(H & Zp.

,p)

Proof. For any (K) € ®G there is a unique conjugacy class (H) with |WH| prime
to p and ¢(H,p) = q(K,p) [5, 5.7.2]. By assumption any |W H| is relatively prime
to p. Hence the ideal I(H,p) is ¢(H,0), and the proof is completed by Proposition
2.2.9. [
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The prime ideals of the ring A(G)/I(Z) ®g Z[g™1] are exactly the ¢(H,0) and
q(H,p) for any prime number p that does not divide |G| and (H) € £(Z). By lemma

2.4.1 we get that the localization of A(G)®zZ[g~!] at any maximal ideal g(H, p) is

(A@)®zZlg™ Ny p) = Zp)-

Similarly for A(G)/I(Z) and Wg(Z) using Propositions 2.2.10 and 2.2.11.

Proposition 2.4.2. Let G be a compact Lie group. Let Z a stable homotopy rep-
resentation with dim(Z) > 0 and E(Z) a closed subset of ®G. Then we have an
tsomorphism

n (2) @2 2lg™" = (AG)/1(2)) @2, Zlg ")

of A(G)-modules.

Proof. We prove, using Theorem 2.2.4 and induction on orbit types, that there is
amap f: SV — X such that for any conjugacy class (H) € £(Z) and any prime
number p that does not divide |G|, we have that the degree of fH is prime to p.

Order the orbit types of SV that are in £(Z) such that (H;) > (H;) implies that
i < j. For a given j assume there is a map f;_1 : SV - X such that deg(ffI_il) is
relative prime to |G| for all i < j. If [W H;]| is infinite let f;_q = f;. If [W H}| is finite
we use Theorem 2.2.4 to alter the map |[W H,|f;_1 to obtain a new map f;, such that
the deg( ) \WH; |deg( ‘) forall i < j and deg(fH ) = |[WHj|. This new map
fj has the required property for all 4 < j. To start the induction choose a map with
deg(f&) =1 [5, 10.2.5].

The induced map fyx : A(G)/I(Z) — ﬁg (Z) localized at any maximal ideal ¢(H, p)
of A(G)/I(Z) ®7 Zlg™ 1] is

deg(fH) : Z(p) — Z(p)

This is an isomorphism, since the degree of f g relatively prime to any prime number

that does not divide |G|. Hence the map f induces the required isomorphism. O
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We can say more for finite groups. The following Theorem is from [12, 3.6], it is

also implicit in [14, Chap.5] and [5, p. 226].

Theorem 2.4.3. Let G be a finite group of order g, and let Y be a retract of a finite
G-CW complex. Then

7§ (V) g Z[gY = (1;) mo(YEYWH @7 7[g71).

In particular for any stable homotopy representation Z we have that
75 (Z) ®@.4() AG)/1(2) @7, Zlg™ " = A(G)/1(Z) @7 Z[g™"].

We have an isomorphism of rings

A@)/1(2) 07,29 = [ (myee(z) Blo Y-
For any invertible A(G)-modules P we have that

P @y Zlg™] = A(G) @z Z[g™ .

2.5 More on invertible A(G)/I-modules

In this section we prove that for a finite group G and any A(G)-ideal I the homo-
morphism

A(G)/I ® — : Pic(A(G)) — Pic(A(G)/I)

given by tensoring an representative for an isomorphism class of invertible A(G)/I-
modules with A(G)/I is surjective.

For clarity of the argument we prove a more general result.

Lemma 2.5.1. Let X be a Noetherian scheme of dimension 1, and let j : V — X
be a closed subscheme. If (’))x( — j*(’)é s epic as a map of sheaves of abelian groups,

then Pic(X) — Pic(V) is surjetive.
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Proof. Let K be the kernel of (’);( — j*(’){}. From the long exact sequence in coho-
mology
H'(X; 0%) = HY(X;5:05) — HA(X; K)

is exact. Since X is a Noetherian scheme of dimension 1, the Grothendieck vanishing

theorem gives that H2(X; K) = 0 [9, 3.6.5]. Hence the homomorphism
Pic(X) = HY(X; 0%) — HY(X; 5. 05) 2 HY(V; 03F) = Pice(V)

is surjective. O

Lemma 2.5.2. Let X be a scheme. The canonical map Ap : (O>)p — (Op)* is an

tsomorphism for all points p € X.

Proof. The map Ap composed with the inclusion (Op)* — (Op) is the localization at
the point p of the inclusion O* — O, hence is itself injective. We conclude that A
must be injective.

To show surjectivity, let y € (Op)*. There exists an open set U containing p and
elements § and Z in O(U) such that § restricts to y in Op, and g2 restricts to 1 in
Op. Hence there is an open set V' containing p in U such that §Z|V is 1 in O(V'). We

conclude that y comes from an element in O (V') hence from (O*)j. O

In particular the map O% — j«Oy; is epic if and only if for all points p € V' the

homomorphism (O ,)* — (Oy ;)™ is surjective.

Proposition 2.5.3. Let R be a Noetherian ring of dimension 1, and let I be an ideal
of R such that for all prime ideals p of R/I the induced map of units of the quotient
map

Ry — (Rp/Ip)™

18 surjective. Then the homomorphism
R/I ® — : Pic(R) — Pic(R/I)

18 surjective.
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Proof. Let V be the closed subscheme spec (R/I) and apply Proposition 2.5.1. It is
easy to identify the homomorphism as given by the tensor product with R/I. U

Lemma 2.5.4. Let G be a compact Lie group, and let I be any ideal in the Burnside
ring A(G). Then for all prime ideals q of A(G) the map

(A(@)g)™ = ((A(G)/1)g)*

18 surjective.

Proof. If ¢ 2 I then the statement is trivially true. Assume that q(H,p) 2O I,
where H is any subgroup of G and p is 0 or a prime number. We then have for
all i¢ € I, via the degree function, that iy = Omodp. The elements of A(G) are
identified with elements in a direct product of the integers indexed over the conjugacy
classes of closed subgroups of G. Let me/se € A(G)y(frp) be an element such that
[me/se] € ((A(G)/I)g(rp))™- Then there is an element ne/te € A(G)ypp) such
that mene/Sete = 1 in ((A(G)/I);(H,p)' Hence there is a ke & q(H,p) and an ie € I
such that
ke = (kemene/sete) + ie

Since ke, Se,te & q(H,p) and I C q(H, p) we get that

0Z kgsgtg = kgmpyng mod p.

This implies that both me and ne are not in ¢(H,p) hence invertible in A(G)y(g p)-
U

The Burnside ring A(G) of a finite group G is a Noetherian ring of dimension 1.

As a consequence we get

Proposition 2.5.5. Let G be a finite group, and let I be any ideal in the Burnside

ring A(G). Then the following homomorphism is surjective

A(G)/I ® — : Pic(A(G)) — Pic(A(G)/I).
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When G is a compact Lie group A(G) is a ring of dimension 1 but it is typically

not Noetherian. It is unknown if the vanishing theorem still applies in this case [7].



Part 11

Picard Groups Of Derived

Categories
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CHAPTER 3
PICARD GROUPS OF DERIVED CATEGORIES

3.1 The derived tensor product and K-flat resolutions

We recall the following definition from [17, 5.1].

Definition 3.1.1. A complex F'* is K-flat if for all acyclic complexes A® the complex
F*®nA® is acyclic. A K-flat resolution of a complex M*® is a cohomology isomorphism

F®* — M*® where F*® is a K-flat complex.

For an object X in the site C let X also denote the sheaf of sets in £ represented
by the object X. Let jx : £|X — & be the localization map [10, 5.2]. The O-module
Jx17% O is called the free O-module generated by X, and we denote it by Ox [10,
11.3.1]. There is an adjunction [10, 11.3.3]

hom p((Ox, M) = homg(X, M) = M(X).
For any point p of £ there is a canonical isomorphism of stalks
(Ox)p = &x,0p

where the sum is over the set X, [10, 11.3.5]. Hence (Ox)p is a flat Op-module for

all points p of £. Since £ has enough points it follows that Ox is a flat O-module.
For each element m € M(X) the adjunction gives a unique morphism Ox — M

of O-modules. Since the site C is small we can construct the following epic map of

O-modules

F(M) = ®&xec Omem(x)\{o} Ox = M.

31
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When M = 0 we set F'(M) = 0. This gives a canonical resolution of any O-module
M
-3 —2 -1 0
5 Pker(d™ ) S Plker(d%) S F(M) S M — 0.

Let us denote this resolution F*(M). For any map g : M — N there is a canonical
map F(g) : F(M) — F(N) such that d° o F(g) = g od’. This gives a canonical
map F*(g) : F*(M) — F*(N) of the resolutions. Hence any bounded above cochain

complex of O-modules
s M2 Ml M 50
has a resolution which is (the totalization of)
o FU (M2 o P M) o FUM™) - 0.

We call this resolution the standard resolution. For each point p of £ the complex
F*(M)p is a complex of free Op-modules. Hence the standard resolution localized at
a point p is a bounded above complex of free Op-modules, which implies that it is a
K-flat complex of Op-modules [17, 3.2, 5.8]. Since £ has enough points it follows that
the standard resolution is a K-flat complex of @-modules. Hence all bounded above
cochain complexes have K-flat resolutions.

For an O-module M and an integer n we denote the complex which is M in
degree n and trivial in all other degrees by M[n]. The map M — M][0] defines a
monomorphism Pic(M) — Pic(Dyy). Let 7<,M*® denote the sub-complex of M*
which is 0 in degrees above n, the kernel of d : M™ — M™*1! in degree n, and agrees
with M® in degrees below n. The map 7<,M*® — M?® induces an isomorphism on
cohomology groups in degrees less than or equal to n. The following lemma is from
17, 3.3].

Lemma 3.1.2. Let M*® be a cochain complex of O-modules. Fiz an integer k. There
exists a sequence

[ ] [ ] [ ]
Fep = Fppqp = P — -
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of complezes of K-flat O-modules mapping into M*® such that Fl = 0 for all ¢ > n
and pp 2 Fy — 7<pM® is a cohomology isomorphism. Let F* = colim(Fy). In each
degree F* is a sum of flat O-modules of the form Ox for X € C, and F*® is a K-flat
complex. The map F* — M*® is a K-flat resolution of M*®.

Proof. For the given k, let F ]; — <M * be the standard resolution. We now con-
struct Fy; inductively. Assume that p,—q : Fr_; — 7<p_1M® is given. Let p 4
denote the composite of y,_1 with the inclusion 7<,,_1M*® — 7<, M*®. Construct the
following diagram:

! !
. By 1 . . 1% _1[1] .
n—1 S TSHM - Cﬂh_l - Fn—l [1] - T<nM 1]

1, |

Q* —L—Fy_ (1 Cy.

The cone Cﬂln . is a complex which is 0 in degrees above n, and we let Q* — C W
be the standard resolution. In particular Q" is 0 for ¢ > n.

Define F; to be Cy[—1] and let puy, be the evident cohomology isomorphism
Cyl—1] — 7<pM?*. By construction F! = 0 for i > n, and since both Q* and
F?_ are K-flat complexes of O-modules F}} is a K-flat complex of O-modules. Note

that pp,—1 is the composite map
Fo_ — Fr 5 Mo,

Since cohomology commutes with filtered colimits F'®* = colim(F}}) — M*® is a

cohomology isomorphism and, since each F; is K-flat, F'® is also K-flat. O

Remark 3.1.3. A ring R (resp. an R-module) is a ringed space (resp. module over the

ringed space) when the site is the category with only one object and one morphism.

3.2 The Picard group of the derived category of R-modules

Let R be a commutative unital ring.



34

Lemma 3.2.1. Let M*® be an invertible object in Dg. Then there exists an integer m
such that H1(M®) = 0 for ¢ > m and H™(M?®) # 0 is a finitely generated R-module.

Proof. Replace M*® by a K-flat resolution F'® as in Lemma 3.1.2. R][0] is the unit
object in Dg. Let F* ® g G* = R[0] in D where G*® is a K-flat complex.
By choosing a cycle representing the image of 1 under the isomorphism R =

HO(F* ®p G*) we get a map of cochain complexes
n:R[0] - F*®rG*

inducing an isomorphism on cohomology. Since F'* = colim(F,y) the map 7 factors

through F; ® p G* for some integer n. By tensoring the commutative triangle

Fy ®pG*

|

R[0] =~ F* @R G*

\

with F'* from the right and using the equivalence G* ® p F* = R[0] in D we see
that F'® is a retract of Fjy in Dg. Since Fjl = 0 for ¢ > n and M*® has nontrivial
cohomology we conclude that there is an integer m such that HY(M*®) = 0 for ¢ > m
and H™(M?®) # 0. In particular pyy, : F;, — M*® is a cohomology isomorphism.

Next we show that Fj, is a retract in Dy of a bounded complex B® which is a
finitely generated R-module in each degree and satisfies B4 = 0 for ¢ > m. As above

there is a map of cochain complexes
n: R[0] = Fy, ®g G*

inducing an isomorphism on cohomology. Let n(1) = %; jcz fi,j ®g 9i,j Where f; ; €
F' and 9ij € G~ for all 7 and j, and almost all the fi j are zero. Let B® be the
subcomplex of Fy, generated by all the f; ;. Since almost all the f; ; are zero, B® is

a bounded subcomplex of Fy,, so BY = 0 for ¢ > m, and B" is a finitely generated

m»

R-module for each integer n.
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The map 7 factors through B® @ g G*. Tensoring the factorization with F, from

the right gives the commutative diagram

B*®p G* ®p F — B®

| |

Ft o F @p G* @p FY — F3 .

Since both Fy, and G* are K-flat all the tensor products are derived tensor products.
We get that F}y,, hence M*®, is a retract of B® in Dg. In particular H™(M*®) is a retract
of H™(B®) = B™/d(B™~!). Hence H™(M?®) is a finitely generated R-module. [

It is easy to see that if the cohomology of M*® is concentrated in one degree, say
n, then M* is isomorphic to H"(M*)[n] in Dg. The proof of the next result follows
[11, V.3.3].

Proposition 3.2.2. If R is a local ring then up to isomorphism the invertible objects

in DR are precisely the R[n| for any integer n.

Proof. The complex R|[n] is invertible for any n since R[n] ®% R[—n] = RJ0].
Let M* ®% N*® = R|0] in Dg. Since the complexes M*® and N*® are bounded from

above, there is a convergent spectral sequence

BT = @ Tork(H(M®),HI(N*)) = HPTI(M* @) N*)
i+j=q

where the grading is so that Tor% is zero for p > 0. Since M*® ®§ N* = R[0] the
cohomology group H" (M*® ®If% N*) is isomorphic to R when r = 0 and is zero when
r#0. If H’(M') =0 for ¢ > m and Hj(N') = 0 for j > n, the spectral sequence
gives us that the Kiinneth map

H™(M®) @ HY(N®) — H™ T (M® @% N*)

is an isomorphism. If, further, H™(M®) # 0 and H"*(N®) # 0, then by Lemma

3.2.1 both modules are finitely generated. One proves by induction on the number
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of generators and by Nakayama’s lemma that H™(M®) @ g H*(NN®) is also nonzero,
hence is isomorphic to R. The ring R is local so up to isomorphism R is the only
invertible R-module, hence H™(M®) = R and H"(N°®) = R. Using the spectral
sequence it is now easy to see that Hl(M *) = 0 whenever 7 < m. The cohomology
of M* is concentrated in degree m where it is isomorphic to R, hence M*® = R[m] in

Dp. O
There is a canonical Kiinneth homomorphism of degree 0 [3, IV.6.1]
a: H*(F*) @ H*(G*) —» H*(F* @ G*).

The Kiinneth homomorphism is preserved by exact functors which commute up to
isomorphism with the tensor product. Hence the localization of « at a prime ideal of

R is still the Kiinneth homomorphism.

Lemma 3.2.3. Let R be a commutative unital ring. If M*® is an invertible object in
Dpg then
Onez H" (M.)

18 an tnvertible R-module.

Proof. Let M*® ®% N*® = R[0] in Dp. Localizing the Kiinneth homomorphism
a:H*(M*) @ H¥(N®) — H*(M* @% N*)
at a prime ideal p in R gives us the homomorphism
ap : H (M7) @, H (Np*) = H (M,* @ Np®).

By Proposition 3.2.2 the Kiinneth homomorphism «y is an isomorphism for all prime

ideals p in R, hence « is an isomorphism. This means that

Gicz (H(M®) @g HH(N®)) = R
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and
i jmg (HI(M®) @ H (N*)) = 0

for all integers ¢ # 0. Hence we get that
(@iez H'(M*)) @R (®jez H/ (N*)) = R

and @;cz H (M*) is an invertible R-module. O

Lemma 3.2.3 implies that for each prime ideal p in R, there is an integer U(M*®)(p) =
n such that H"(M®), = Ry and HY(M*®)y, = 0 for all ¢ # n. For a topological space
T let C(T) denote the additive group of continuous maps from 7" to the integers Z
with the discrete topology.

We recall a lemma about idempotents.

Lemma 3.2.4. There is a bijection between the open closed subsets of spec R and the
idempotents in R. Let ey denote the idempotent corresponding to the open closed set

U. The bijection has the following properties.

1. The subset speceyy R C spec R isU. The open closed set U is {p € spec R | ey Ry =
Rp}. If q € U then ey Rq = 0.

2. The correspondence gives a natural isomorphism between the Boolean algebra of

tdempotents in R and the Boolean algebra of open closed subsets in spec R.

The second statement means that for any open closed sets U; and Us we have
CUINUy = €U, CUys €U UU,—UiNUs = €Uy T+ €Uy — 26UynU,, ex = 1 and ey = 0;
naturality here means that if f : R — S is a map of rings and U is an open closed

set in spec R then we have f(eg) = esSpec(f)_l(U) in S.

Proof. Let Uy be an open closed subset of spec R, and let Us be the complement of
Uy in spec R. Let I1 and Is be two ideals in R such that {p € specR | p D I;} = U;.
Then I; N I3 is in the radical VR of R and I + Is = R. Let iy € I; and iy € Iy
be elements such that i; + i9 = 1. Then their product i1i9 € V'R so there is an

n such that 74§ = 0. Since (i7,i5) = R there exist elements a and b such that
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a(iy)™ 4+ b(i2)™ = 1 in R. It now follows that e; = a(i1)" € I and ey = b(i9)" € I1
are orthogonal idempotents. The map of spectra induced from R — e;R gives an
inclusion of U; into spec R.

We now show that the idempotent e associated to an open closed set U is unique.
Let e and ¢ be two idempotents corresponding to the same open closed set U
i.e. spec (eR) = spec (¢/R) = U. The product e(1 — ¢€’) is in the radical of R hence (e
and €' are idempotent) e(1 — ¢’) = 0; similarly (1 — e)e’ = 0. We now get that

e=ele+(1—¢))=e!=(e+(1—¢))e =¢.

The other statements in the Lemma follow easily using uniqueness of the idempotent.
O

Theorem 3.2.5. Let R be a commutative unital ring. There is a natural split short

exact sequence
0 — Pic(R) — Pic(Dg) % C(specR) — 0.

Proof. From [15, 4.10] the set of prime ideals such that H"(M*®)y, = Ry is an open
closed set in spec R. Hence p — W(M®)(p) defines a map ¥ : Pic(Dgr)—C(spec R). It
is clear from the proof of Proposition 3.2.2 that ¥ is a homomorphism. If ¥(M*®) =0
then M*® = HO(M*)[0] in Dp, and since HO(M*®) is an invertible R-module M*® is in
the image of Pic(R) — Pic(Dg).

We construct a splitting of W. The spectrum of R is a compact space so the image
of any continuous function f : spec R — Z consists of a finite set of integers, say
ni,...,Nm. The disjoint subsets U; = f_l(nz-) of spec R are both open and closed,
hence correspond to an orthogonal basis of idempotents eg/,, .. ., ey, in R. Define the
invertible complex ®(f) to be & ey, R[n;|. By Lemma 3.2.4 the composite ¥ o ®(f)
is equal to f.

We now check that ® is a homomorphism. Note that if f = 0 then ®(f) = R[0].
For two finite open closed partitions {U;} and {V;} of spec R we have that

N M ~ N M
Diz1ev; Blnil ©r Sj=1ev; Rimjl = ®; [ ev;nv; Blng + my].
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Hence @ is a homomorphism. It is easy to see that the split short exact sequence is

natural. O

3.3 The Picard group of the derived category of O-modules

Recall that (£, ) is a ringed topos with enough points, and that M is the category
of left O-modules.

Proposition 3.3.1. Let F'* be an invertible object in the category of left O-modules.
Then
Onez Hn(F.)

18 an invertible O-module.

Proof. Let F'* ®I(5 G* =2 O in Dy,. Assume that F'* is a K-flat complex of O-modules
as constructed in Lemma 3.1.2. The localization of F'® at a point p of £ is then a K-flat
complex of Op-modules. Taking the stalk at a point p of the Kiinneth homomorphism
« gives

ap : H¥(Fp) ®0, H*(G}) — H*(F; ®p, Gp)
in the category of Op-modules. By Lemma 3.2.3 oy, is an isomorphism for all points p.
Since £ has enough points the Kiinneth homomorphism « is an isomorphism. Hence

we get as in the proof of Lemma 3.2.3 that
(@iez H'(F®)) ®0 (®jez B (G*)) = O

and @;cz HY(F*) is an invertible O-module. O

Theorem 3.3.2. Let (£,0) be a commutative unital ringed Grothendieck topos with
enough points such that for all points p of £ the ring Op has a connected prime ideal

spectrum. Then there is a natural split short exact sequence

0 — Pic(M) — Pic(D ) — C(pt(E)) — 0.



40

Proof. Let F'® be an invertible complex in D 4. By Proposition 3.3.1
F = @z H'(F*)

is an invertible @-module. Let G be an inverse of F' under the tensor product. Let
Al = HY(F*) ®p G. Then @®;czA" = O. If we localize this at a point p of £ we get
that EBieZA;f, = Op. From our assumptions on O) there is an integer ny, such that
Ap? = Op and Al = 0 for i # np. Define U(F*)(p) to be nyp.

If U(F*) = 0 then HY(F*) ® G = O and HY(F®) = 0 for all 4 # 0 so F*® =
HO(F*)[0] = F[0] in D .

It remains to prove that ¥ takes values in C'(pt(£)) and is split. We need to prove
that if A® B = O then {p € pt(€) | Ap = Op} is an open closed set in pt(£). Denote
the terminal object in £ by e. The sheaf of sets e associates to every object in the
site C the one-point set.

Let 1: e — O be the unit and 0 : @ — O the zero element. We can compose these
two elements with the projection from O =2 A @ B to A.

There is an equalizer

in £, and S is a subobject of e. Points preserve limits so we get for each point p of £

an equalizer
1

~ A

Sp——>e D
0

in the category of sets. Since Sp # 0 if and only if 1 = 0 in Ay it follows that
{pept(€)[Ap =0} ={pept(€)]Sp=e}

which by definition is an open set in pt(€) [10, 7.8]. The same argument applied to
B shows that {p € pt(€)|Bp = 0} is also open in pt(£). Since Ap @ By = Op and
Op has connected prime ideal spectrum exactly one of A, and By, is zero, so the two
sets {p € pt(£) | Ap = 0} and {p € pt(£) | By = 0} are complements of each other in
pt(£). Hence {p € pt(£) | Ap = 0} is an open closed set in pt(£).



41

We now construct a splitting of U. Let ¢ be a continuous function pt(€) — Z.
For each integer n let Sy, be the subobject of e corresponding to the open closed set
¢~1(n). For a subobject S in e, let Og be defined by Og(X) = O(X) if S(X) =
and Og(X) = 0if S(X) =0 for X € C. By considering the zero and the unit maps
0,1:5; — Osi’ using the evident isomorphism @ieZOSi_)O and our assumption on
Op it is easy to see that (Og,)p = Op if and only if (S;)p = e. Define the complex
®(¢) to be Og, in degree 7 and to have trivial differentials. Since Og®0 Or = Ognr

for two subobjects S and T of e, it follows that ® is a homomorphism. In particular
P(9) ®p ®(—¢) = @(0) = @ieZOSZ- = Q.

So @ takes values in Pic(Dyy). Since (Og;)p = Op if and only if (S;)p = e, the
composite ¥ o ® is the identity on C(pt(£)). It is easy to see that all three maps in

the split short exact sequence are natural with respect to maps of ringed topoi. [
As a special case we get the following result.

Corollary 3.3.3. Let (X,0) be a locally ringed space with an action by a discrete

group G [9]. There is a natural split short exact sequence

0 — Pic(X) = Pie(Dyy(x)) ~ C%(X) = 0.

Here sh(X) denotes the category of left G-O-modules, Picg(X) denotes the
group of isomorphism classes of invertible G-O-modules, and C%(X) denotes the
G-fixed subgroup of C'(X) [10, 8.4.1].

We now generalize the theorem to ringed topoi where the Op are not necessarily
connected. Define a sheaf of abelian groups C(Q) by sheafifying the presheaf which
maps an object X € C to C(spec O(X)). Let I'(G) = homg (e, G) denote the global

sections functor.

Proposition 3.3.4. There is a natural split short exact sequence

0 = Pic(M) — Pic(D ) % T(C(0)) = 0.
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Proof. Let F'® be an invertible complex in D z4. From Proposition 3.3.1 F' = @;¢7, H! (F*®)
is an invertible O-module. The direct sum (resp. tensor product) in M is the sheafi-
fication of the presheaf direct sum (resp. tensor product). Let F ®» G = O. There

is a covering {V,} such that

®icz H' (F*)(Vy) ®@o(v) G(V5) = (Biez H'(F®) ®0 G)) (V) = O(V)

for each v. Define 1 : spec O(Vy) — Z by letting 1, (p) be the unique integer i such
that H!(F*)(V4)p # 0. The maps {t,} are compatible so they define an element
T(F*®) in T(C(0)). It is easy to see that the map ¥ is a homomorphism.

We now construct a splitting ® of ¥. Given ¢ € I'(C(0)), there exists a covering
{V4} and maps ¢, : spec O(Vy) — Z such that {¢y} = ¢ in I'(C(O)). By Lemma
3.2.4 there are unique idempotents eZ, € O(Vy) such that for each el the subspace
spec (e5,0(Vy)) C spec O(Vy) is (b;l(n). For a given n let e" = {ef}}. Then e"
is an idempotent element in I'(O), "™ = 0 for n # m, and @;cze"O—O is an
isomorphism of O-modules. Define ®(¢) to be the complex which is €O in degree n
and has trivial differentials. Then ® is a homomorphism from I'(C(O)) to Pic(D )
such that U o ® is the identity on ['(C(O)). The naturality is easily verified. O
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